
Technical Report #5-20446
Contract Number DAAH01-98-R001
Delivery Order No. 37

(U) 3Dpimms Verification and Blast Methodology Study
(5-20446)

Final Technical Report

February 2000

Prepared by:

Glenn E. Romanczuk
Chris Pitts

Will Lee

Visualization & Simulation Laboratory
Research Institute

The University of Alabama in Huntsville
Huntsville, Alabama 35899

Prepared for
Aeroballistics Analysis Functional Area

Research, Development, and Engineering Center
U.S. Army Aviation & Missile Command

Redstone Arsenal, Alabama 35898
Attn: Ms Edith Crow AMSAM-RD-SS-AA

I have reviewed-this docwmefSf for technical and security purposes and find it acceptable.

20000502 111

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this bdrden estimate or any other aspect of this
munition uf iufoimaliuii, iucluding^iiggesliuus forreducing the burden to Washington Headquarters Services, DüectOTate-for-rnfornration-bperations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
January, 2000

3. REPORT TYPE AND DATES COVERED
Final, 1/21/99-12/31/99

4. TITLE AND SUBTITLE

3DPimms Verification and Blast Methodology Study

6. AUTHOR(S)

Mr. Glenn E. Romanczuk, Mr. Chris Pitts

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The University of Alabama in Huntsville, Research Institute
301 Sparkman Drive, Rl E-47
Huntsville, Alabama, 35899

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Aviation & Missile Command
AMSAM-RD-SS-AA
Commander, AMCOM
AMSAM-RD-SS-AA
Redstone Arsenal, AL 35898

5. FUNDING NUMBERS

PERFORMING ORGANIZATION
REPORT NUMBER

5-20446

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

UnClassified/Unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

This report documents the efforts of the University of Alabama in Huntsville to assist in the Verification and Validation of a new
MOUT lethality code 3DPimms. This code has been constructed over the past three years to replace PIMMS.

A Verification and Validation was authored and approved by the accrediting agency, EAC (now AEC) and a Verification and Validation draft
report was authored and is awaiting approval. A large amount of uncertainty exists in the next items for this methodology to include.
Therefore, plans include contingencies for the inclusion of Blast and other insults which can cause incapacitation. A unique method of
using a blast transport code and Blast code derived from a mechanical model of chest wall/lung interaction has been postulated. This
method is recommended as a first cut attempt to include blast in MOUT analysis before ORCA is available.

A tool to display and analyze pk maps was also generated during this work. This tool allows for simulation data to be merged with Pk
maps of interest and display an ovrall answer for system lethality.

14. SUBJECT TERMS

Verification, Lethality, Visualization, Simulation, ORCA, Effectiveness, Incapacitation

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
87

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500

^CQÜALlTy0fspECTED

Standard Form 298 (Rev. 2-8S)
Prescribed by ANSI Std. Z39-18
298-102

PREFACE

(U) This technical report was prepared by the staff of the Visualization & Simulation Laboratory of the
Research Institute, The University of Alabama in Huntsville. It documents the research performed
under contract number DAAH01-98-R001, delivery Order 0037. Mr. Glenn E. Romanczuk served as
the Principal Investigator Ms. Edith Crow of the AMCOM Aeroballistics Analysis functional area
provided the technical coordination..

(U) The views, opinions, and/or findings contained in this report are those of the authors) and should not
be construed as an official Department of the Army position, policy, or decision unless so designated
by other official documentation.

(U) Except as provided by the Contract Data Requirements List DD 1432, whereif, the distribution of any
contract report in any stage of development or completion is prohibited without the approval of the
Contracting Officer.

Prepared for:
Commander
U.S. Army Aviation & Missile Command
Redstone Arsenal, Alabama 35898

(U) I have reviewed this report, dated February, 2000 and the report is unclassified.

LIST OF FIGURES

Figure 1 & 2 , The Qk window and the main Menu modification

Figure 3 - The TLT in Windows

Figure 4 - The Config Dialog in Windows

Figure 5 - An example of the Didi weight code

Figure 6 - A test image showing spall paths

Figure 7 - PiMan on the PC

Figure 8 - The PIMan code on the Silicon Graphics

Figure 9 - Simvu displaying bunker testfile

Figure 10 - Simvu displaying APC test image

Figure 11- The Interactive Analysis environment in ProspectV2

Table of Contents

INTRODUCTION 5

SCOPE OF WORK 5

RESULTS 5

MAINTAIN SOFTWARE 5
WEIGHTING CODES 7
LETHALITY WORKING GROUP MEETINGS 7
BLAST AND THERMAL METHODOLOGY 8

Blast Research 8
Methodology creation and review with ARL 8

V&V EFFORTS 9
GENERAL LETHALITY SUPPORT 9

APC Lethality Visualization 9
PiMan Tools 10

Simulation Results and Target Viewers 10
General geometric linkages to wound ballistics models U
Virtual Reality and V&V Tools 16

CONCLUSIONS 20

APPENDIX I - V&V PLAN 21

APPENDIX II - V&V DRAFT REPORT 65

APPENDIX III - GEOMETRY POSSIBILITIES 82

Introduction

This contract between the University of Alabama in Huntsville, Research Institute
and the Systems Simulation and Development directorate of the U.S. Army Aviation &
Missile Command covered the specific items and engineering services which are
presented in the scope of work section of this report.

The UAH reference number for this work is Account number 5-20446 and is
entitled F/DOD/ARMY/AMCOM/LETHALITY SUPPORT FOR MPM. The period of
performance was 1/21/99 to 12/31/99.

Scope of Work

The following items are listed in the scope of work for this task order contract
with U.S. Army Aviation & Missile Command.

1. Maintain current software, NEWP, as system upgrades are required.
2. Participate in quarterly Lethality Working Group Meetings.
3. Provide software support to upgrade GUI and formulate plans to include blast and

thermal data into the methodology.
4. Upgrade to the latest version of ComputerMan.
5. Provide software support in the area of implementation and use of codes

developed. Investigate ORCA and provide hooks for implementation.
6. Assist with V&V efforts on 3Dpimms and coordinate with AMSAA and EAC.

Results

Maintain Software

The current version of 3Dpimms was maintained and several new capabilities
were added. The first capability was the addition of a button to allow the analyst access
to a special form of Probability of Kill file. These files have a special format for vehicles
with a specific number of personnel inside. However, the program was written to handle
any number of data columns.

The program is a variant of the standard PK code which UAH has utilized for the
past 10 years. However, this code is customized to work with 3Dpimms and special files
which group Probability of incapacitation and aggregate it in a specific manner. The user
is cautioned to remember this fact.

Figure 1 contains an image of the qk program and Figure 2 shows the place that
the analyst pushes to generate the appropriate graphical output.

Figure 1 & 2, The Qk window and the main Menu modification

Additionally, tiles were installed on the AMS AA Octane tor AMS AA personnel
to utilize. Also, under development is a standard release version which will allow for all
directories and environment variables to be standardized. This update and layout of the
proposed directory tree will be checked by the customer and then delivered to AMS AA.
Significant efforts were also expended to begin the exploration of using the Windows
environment in addition to Unix. Several tools were prototyped which would allow an
analyst to use Windows for an entire analysis. Figure 3 & 4 show these working
prototypes.

jEjfpä
£fc ,;6» ,£«**. jt(* ::;:■

•
■

" ^

•

.
"■

!

■fl**fr.':' iiflSEfcät?

m

■MSS

«BJWIY.

im$erue - -

fVKT

rim»

moMas-
r rexnni

i. ' ■ r

*« r
,. onwourpur

r~5r-|
•ilWi^i

Figure 4 - The Config Dialog in Windows

Figure 3 - The TLT in Windows

Weighting codes

Several weighting codes were written from customer requirements. Simulation
data from a 6DOF of the MPIM system is available and this information must be tied
together with the Pk data from the vehicles of interest and the MOUT targets. Figure 5
shows a sample image from this code.

Lethality Working Group Meetings

Numerous Lethality Working Groups and quarterly IPR's were attended during
the course of this contract. Several critical and key decisions were reached during these
meetings. The list of key areas reached is too numerous to detail in this report but a
major result, which was achieved due to UAH assistance, was the final definition of a
squad kill or incapacitation. This method includes the definition of a new performance
indicator the merged Probability of Mobility or Firepower or Incapacitation. (Pkmfi).

(US-0.14 ■
EL2S-0.29N
0-9»-0*4 ■
QJS-OJt*
ÜM-D44I
045-04* ■
as»-«* m
OJS-0-St 5=
0*0-4*4 0
0*5-0 .»t»
0.7»-fl.74
D.7S-0.7» *

Sav -AM* -Or

s^RfiSjjT

*'"''**'' 'TÄ; >"1''"""

■Auüatum . ■

cuirf; was

>IW&''--
4MJ
MM
2MJ
M»J
11MJ
1MM
9WJ
SNJ
7WJ

2NM Ml Ml MO
MM Mt Mt (in
MU Ml Ml MO
MU MS M5 MS
»U Ml U» 0.M MO
SIM Ml

OM

MO OM
MO OJI
MO OJM
MO OJM Ml
BJM MD Ml MO

MO Ml li» Ml MO Ml Ml
2*M UMUOMUIUIUIUIU
29IM UWUOUMUIUIUII
2MM Ml Ml MO Ml 110 I« M Ml M
ZUM Ml Ml MO 0.H li» Ml Ml Ml
ZUM Ml *M MO OH UO M W Ml

.," " " .'—T^-1—^^■■■■■■■■■—T

Figure 5 - An example of the Didi weight code.

The above mentioned agreement and definition ends three years of effort to define
a method of calculation of a weighted Measure of Effectiveness (MOE) that meets the
intent of the MPIM Requirements documents.

Additionally, EAC has reached an agreement to accredit 3Dpimms methodology
as the Evaluation tool for the MPIM Evaluation. Please refer to the V&V section of this
report for more information.

Blast and Thermal methodology

Blast Research

Several key documents were gathered and analyzed for creation of a prototype
inclusion of blast data into 3Dpimms. This work traced the available blast data and
analysis from the 1950's to current methods using mechanical models of the chest / lung
system. The results are too numerous to place in this brief report, however, major
findings can be summarized in the following sections.

Several missile systems at Redstone are undergoing tests which allow a blast
environment to be collected and evaluated. Working with our COTR, inputs to the
methodology and subsequent report were generated. The report authored by Brian Smith
and Edith Crow, is entitled, "Personnel Lethality Prediction Techniques for Military
Operations in Urban Terrain (U), TR-RD-SS-00-XX. The definitions and the tools and
methodology in the next section are a quick review of the major findings.

Methodology creation and review with ARL

Mr. Dave Neades serves in many capacities within the Army Research
Laboratory. One of his current projects (ORCA) involves the creation of a many insult
on one person incapacitation and casualty model. This model incorporates many existing
legacy models for insults to people. The two that are of current interest are the INJURY
model from the Walter Reed Army Research Institute and the COMPUTERMAN wound
ballistics model from ARL.

3Dpimms is in the process of attempting to utilize the results of Mr. Neads'
efforts by replacing our current implementation of ComputerMan with the tool ORCA.
However, in order to use the blast module, a method had to be created to use test data to
determine the blast environment at any place a man may be located in the standard
bunker or "16 x 16 room." A tool was identified through Mr. Matt Rosenblatt of
AMSAA which allows blast energy to be calculated from physics based models and
output the desired Pressure vs. Time history at given points from a Blast within and
enclosure. This code is from the Waterways Experiment Stations and is called BLASTX.
The code is simple and modular. It runs on a standard Personal Computer under the
Windows operation system. It has a batch mode capability once set up which allows
large runs to be completed quickly. This code provides an accepted physics based
approach to allow blast data from test to calibrate a room by modifying the charge inputs
until there is agreement with the test data. Once this characterization step is completed
the Pressure vs. Time histories for all man locations can be computed.

At this point is should be noted that the BEAMS methodology developed by
ARA should also be considered. This methodology utilizes BRL-CAD raytrace and
room or target files and propagates blast energy from the blast source to other locations in
the target file. It is likely that the same type of Pressure vs. Time history needed could be

gathered from this approach. This will be important if these methods become standard
within the MUVES/AJEM codes. The methodology concept with P vs. T curves per man
location and burst point would be to allow ORCA to determine incapacitation. However,
early alpha tests showed a lack of correlation to entered test data.

Due to the unknown alpha test failures, an alternate methodology was proposed
and accepted. The previous mentioned method would be used to generate the pressure
time histories, however, the standalone INJURY model would be utilized from Walter
Reed. This approach will create a matrix that will allow blast insults to be evaluated first
in the 3Dpimms method. This will aide run time as the people nearest to the burst point
should be incapacitated due to blast. These are the very people whom are usually hit with
the most fragments and add to the run time of the high resolution methodology. This
approach was agreed upon at the last LWG meeting and should be created using FY2000
money.

V&V efforts

The V&V efforts can be broken down into two sections. The first is the planning
document which was required by AEC (Formerly, EAC). This document can be found in
Appendix I and details the process which would establish the Verification and Validation
of the 3Dpimms methodology. The second area was the actual report developed as a part
of the V&V effort. This document is found in draft form in Appendix II. The draft form
is necessary because this document will be bound with the COTR's document on the
validation of the method. This document also can serve as a beginning ASPI document
should JTCG/ME accreditation be needed or conversion to HLA.

General Lethality Support

APC Lethality Visualization

Figure 6 - A test image showing spall paths

Figure 6 shows one result from a tool which allows
for a number of rays to be traced within a cone angle once
the interior of a vehicle is reached. This tool builds on
other work and allows for any penetration routine to be
hooked to each ray that hits part of the target. In our case,
the personnel in the vehicle are the critical components
which will trigger more calculation. In the next sections,
the development of modules which can be used for this
purpose are explained.

PiMan Tools

■JAM

.1*- * «• * .. rw"-"-- — i

.._<3 **&~ »»~
M* ' ' '+

^i^ig^itiiiig^iaafe'

, , A1 j , Figure 7 - PiMan on the PC
Several tools were wntten to develop the modules

and methodologies for comparison of personnel incapacitation models. The tools created
on the PC and on the SGI allow a view of the crouching or standing man to be seen.
Using the mouse, the user selects the ray and shoots the specific fragment. In the
background a BRL-CAD raytrace is started and the appropriate body part and entry and
exit position is returned. Standard coding of the Sperrazza-Kokinakis and the Ballistic
Dose method is used to fill the output screen with the results from those incapacitation
methodologies. Figure 7 shows the interface as it looks in the Windows environment.

Figure 8 - The PIMan code on the Silicon Graphics

Simulation Results and Target Viewers

Simvu was written to show the target and dispersion data on line drawings of targets at all
aspects. The main area of emphasis was the creation of the line drawings in both tiff and
vector form. Figure 9 shows the basic layout with toggles for the various vehicles and a
file select box to read from the simulation file of interest.

»».MM»»:J»»-

m

• ^ |" m

I II

|, i 3
Figure 9 - Simvu displaying bunker testfile Figure 10 - Simvu displaying APC test image

General geometric linkages to wound ballistics models

See appendix III

This is a sample of the types of programs that were written to attempt to create
alternate forms of men to use in 3Dpimms. It should not be utilized without further
testing and evaluation.
#include <stdio.h>
»include <stdlib.h>
»include <math.h>

»define CELL_WIDTH 5.0
»define CELL_DEPTH 5.0
»define H_COLS 107
»define N_R0WS 50
»define N SECS 167

»define
»define
»define
»define
»define
»define
♦define
»define
»define
»define
»define
»define
»define

LEFT_UPR_ARM
LEFT_LWR_ARM
RIGHT_UPR_ARM
RIGHT_LWR_ARM
LEFT_UPR_LEG
LEFT_LWR_LEG
RIGHT_UPR_LEG
RIGHT_LWR_LEG
HEAD_NECK
TORSO ,
THORAX
ABDOMEN
PELVIS

0
1
2
3
4
5
6
7
8
9
10
11 ■
12

const int startsec(13] = (50, 59, 109, 118, 76, 91, 135, 150, 1, 1, 19, 28, 36};
const int stopsec[13] - (58, 75, 117, 134, 90, 108, 149, 167, 18, 44, 27, 35, 44);

const int lowerlimit[8) = (-80, 0, -80, 0,
const int upperlimit[8] = (180, 155, 180, 155,

-30,
110,

-110, -30, -110 };
0, 110, 0);

const int MINROW[l+N_SECS]

1,

15, 12, 11, 9, 8, 9, 9, 8, 8, 6,

5, 8, 9, 9, 8, 8, 11, 15, 18, 18,
16, 15, 13, 9, 6, 4, 4, 2, 1, 1.

1, 1, 1, 2, 3, 3, 4, 6, 8, 11,

14, 15, 14, 19, 51, 51, 51, 51, 51, 21,

21, 21, 21, 20, 20, 20, 21, 22, 23, 23,

23, 22, 21, 22, 22, 23, 24, 24, 24, 25,
25, 24, 24, 27, 28, 19, 20, 20, 21, 21,

21, 22, 23, 23, 23, 23, 23, 22, 21, 20,

21, 22, 23, 24, 24, 25, 25, 26, 26, 26,

26, 26, 26, 26, 25, 25, 22, 1, 21, 21,

21, 21, 20, 20, 20, 21, 22, 23, 23, 23,

22, 21, 22, 22, 23, 24, 24, 24, 25, 25,

24, 24, 27, 28, 19, 20, 20, 21, 21, 21,
22, 23, 23, 23, 23, 23, 22, 21, 20, 21,
22, 23, 24, 24, 25, 25, 26, 26, 26, 26,

26, 26, 26, 25, 25, 22, 1

const int MAXROW[l+N_SECS] = f

o,
37, 40, 42, 43, 44, 46, 46, 47, 46, 45
44, 43, 42, 41, 41, 41, 40, 38, 42, 46,
46, 47, 47, 47, 46, 46, 46, 45, 45, 44,

45, 45, 45, 44, 43, 44, 45, 46, 47, 48,
48, 49, 50, 49, 50, 50, 50, 50, 50, 43,

41, 41, 40, 39, 38, 37, 37, 37, 36, 36,
36, 36, 35, 35, 35, 34, 34, 33, 32, 32,
33, 33, 33, 33, 33, 49, 49, 49, 49, 49,
49, 48, 48, 46, 46, 44, 44, 43, 43, 42

42, 42, 43, 43, 43, 43, 43, 41, 40, 40
39, 39, 39, 39, 39, 41, 44, 46, 43, 41
41, 40, 39, 38, 37, 37, 37, 36, 36, 36,

36, 35, 35, 35, 34, 34, 33, 32, 32, 33,
33, 33, 33, 33, 49, 49, 49, 49, 49, 49,
48, 48, 46, 46, 44, 44, 43, 43, 42, 42,
42, 43, 43, 43, 43, 43, 41, 40, 40, 39,
39, 39, 39, 39, 41, 44, 46

const int MINCOL[l+N_SECS]

1,

45, 42, 40, 40, 39, 39, 38, 36, 37, 37,
37, 39, 40, 40, 41, 42, 42, 42, 31, 15,
13, 11, 10, 21, 22, 24, 25, 24, 25, 25,
25, 26, 27, 27, 28, 27, 26, 26, 26, 24,
24, 23, 23, 23, 1, 1, 1, 1, 1, 9,
7, 7, 7, 6, 5, 5, 5, 5, 4, 4,
4, 4, 4, 5, 5, 5, 5, 6, 5, 5,

5, 3, 1, 3, 3, 21, 21, 21, 21, 23,
23, 24, 25, 26, 28, 29, 29, 30, 30, 29,

30, 31, 31, 31, 31, 32, 32, 33, 33, 34,
34, 35, 36, 36, 35, 33, 33, 32, 88, 87,
85, 84, 85, 86, 86, 86, 85, 84, 85, 85,
86, 86, 87, 88, 90, 90, 90, 91, 91, 89,
88, 88, 89, 90, 55, 56, 57, 57, 58, 58,
58, 58, 59, 59, 59, 59, 59, 59, 59, 59,

59, 59, 59, 59, 59, 60, 60, 62, 63, 63,
64, 64, 64, 63, 63, 61, 60

const int MAXCOL[l+N_SECS] = {

o,
63, 66, 67, 68, 69, 69, 69, 70, 70, 70,
69, 68, 68, 67, 66, 66, 66, 65, 77, 92,
94, 96, 98, 86, 85, 84, 83, 83, 82, 82
82, 82, 81, 81, 80, 81, 81, 81, 82, 83
84, 84, 84, 85, 0, 0, 0, 0, 0, 20

21, 23, 24, 23, 22, 22, 22, 23, 24, 23
23, 22, 22, 21, 20, 18, 18, 18, 17, 17

19, 20, 20, 19, 18, 53, 52, 51, 51, 50,
50, 50, 50, 49, 49, 49, 49, 49, 49, 49,
49, 49, 49, 49, 49, 49, 48, 48, 46, 45,
45, 44, 44, 44, 45, 45, 47, 48, 99, 101

101, 101, 102, 103, 103, 103, 103, 104, 104, 104
104, 104, 103, 103, 103, 103, 102, 103, 103, 103
105, 107, 105, 105, 87, 87, 87, 87, 85, 85

84, 83, 82, 80, 79, 79, 78, 78, 79, 78
77, 77, 77, 77, 76, 76, 75, 75, 74, 74
73, 72, 72, 73, 75, 75, 76

const int ZMINU+N SECS] = 1

0,
1738,
1618,
1456,
1196,
936,

1726, 1714, 1702, 1690, 1678, 1666, 1654, 1642, 1630,
1606, 1594, 1582, 1570, 1558, 1546, 1534, 1508, 1482,
1430, 1404, 1378, 1352, 1326, 1300, 1274, 1248, 1222,
1170, 1144, 1118, 1092, 1066, 1040, 1014, 988, 962,
910, 884, 858, 0, 0, 0, 0, 0, 1378,

1352, 1326, 1300, 1274, 1248, 1222, 1196, 1170, 1144, 1118

1092, 1066, 1040, 1014, 988, 962, 936, 910, 884, 858

832, 806, 780, 754, 728, 832, 806, 780, 754, 728,

702, 676, 650, 624, 598, 572, 546, 520, 494, 468

442, 416, 390, 364, 338, 312, 286, 260, 234, 208

182, 156, 130, 104, 78, 52, 26, 0, 1378, 1352

1326, 1300, 1274, 1248, 1222, 1196, 1170, 1144, 1118, 1092

1066, 1040, 1014, 988, 962, 936, 910, 884, 858, 832

806, 760, 754, 728, 832, 806, 780, 754, 728, 702

676, 650, 624, 598, 572, 546, 520, 494, 468, 442

416, 390, 364, 338, 312, 286, 260, 234, 208, 182

156, 130, 104, 78, 52, 26, 0

);
const int ZMAX[1+N_SECS] = (

o,
1750, 1738, 1726, 1714, 1702, 1690, 1678, 1666, 1654, 1642

1630, 1618, 1606, 1594, 1582, 1570, 1558, 1546, 1534, 1508

1482, 1456, 1430, 1404, 1378, 1352, 1326, 1300, 1274, 1248

1222, 1196, 1170, 1144, 1118, 1092, 1066, 1040, 1014, 988

962, 936, 910, 884, 0, 0, 0, 0, 0, 1404

1378, 1352, 1326, 1300, 1274, 1248, 1222, 1196, 1170, 1144

1118, 1092, 1066, 1040, 1014, 988, 962, 936, 910, 884

858, 832, 806, 780, 754, 858, 832, 806, 780, 754

728, 702, 676, 650, 624, 598, 572, 546, 520, 494

468, 442, 416, 390, 364, 338, 312, 286, 260, 234

208, 182, 156, 130, 104, 78, 52, 26, 1404, 1378

1352, 1326, 1300, 1274, 1248, 1222, 1196, 1170, 1144, 1118

1092, 1066, 1040, 1014, 988, 962, 936, 910, 884, 858

832, 806, 780, 754, 858, 832, 806, 780, 754, 728

702, 676, 650, 624, 598, 572, 546, 520, 4 94, 468

442, 416, 390, 364, 338, 312, 286, 260, 234, 208

182, 156, 130, 104, 78, 52, 26

1;

void articulate (int Bodypart, int Degrees, float v[4], float h[4],float At«],float B[4],int flag);
void matrixMult (float (*ml)[4][4], float (*m2)[4][4], float («result)[4]14]);
void matrixMult2 (float (*ml)[4](4], float (»colvect)[4], float (»result)[4]);

float Man[200][8][4],Man2[200][8][41;
int currentangle[8];

void mainlint arge, char **argv)
1

int i,j,k,Bodypart;
float xmin,xmax,ymin,ymax,zmin,zmax;
int currentangle2[8];
float magA,magB;
float vertex[4],vecA[4],vecB[4], height [4] ,-
FILE *fp;
char line[256];

if(argc < 2) 1
fprintf(stderr,"Usage: CreateTgcMan <posture file> \n");
exit(0);)

if((fp = fopen(argv[l],"r")) =- HULL) [
fprintf(stderr,"Could not open *s\n",argv[l]);
exit(O);)

for(i=0;i<8;i++) (
if(feoflfp)) (

fprintf(stderr,"Error reading %s\n",argv[l]);
fclose(fp);
exit(0);)

fgets(line,256,fp) ,•
sscanf(line,"*d",5currentangle2[il);)

fclose(fp);

for(i=0;i<8;i++)
currentangle[i] = 0;

for (i=l; i<-167; i++)
(

Man[i][0][0] ■= (MINCOL[i] - 1) * CELLJJIDTH;
Man[i][0][l] - (50 - MAXROW[i]) » CELL_DEPTH;
Man[i][0][2] = ZMAXtil;
Man[i][0][3] = 1.0;

Man[i][l][0] = (MAXCOL[i]J * CELLJJIDTH;
Man[i][1][1] = Manli][0][1];
Man[i][1][2] = ZMAX[i];
Man[i][1][3] = 1.0;

Mantil[2][0] = Man[i][1][0];
Man[i][2][l] - (50 - MINRCWti] + 1) * CELL_DEPTH;
Man(i][2][2] = ZMAX[i];
Man[i][2)[3] - 1.0;

Man(i][3][0] = Man[i] [0] [0];
Man[i][3][1] = Man[i][2][1];
Man[i][3][2] - ZMAX[U;
Man[i][3][3] = 1.0;

Manti] 14][OJ = Manti][0][0];
Manti] [4][1] = Manti][0][1];
Man(i] [4] !2] = ZMINti];
Man(i) 14] [31 = 1.0;

Man[i] [S][0] = Manti][1][0];
Manti] [5][1] - Manti][11(1];
Manti] [5] [2] - ZMINti];
Man[i] [5]13] = 1.0;

Man[i] 16] [0] = Manti] [2][0];
Man[i] [6][1] = Manti] [2][1];
Manti] 16] [2] = ZMINti];
Manti] [6] [3] = 1.0;

Manti] [7] [0] - Manti][3][0];

Manti] mm = Man[i][3][l];
Manti] [7][2] = ZMINti];
Manti] mt3] - 1.0;

]

for(i=l;i<=167;i++)t

if(i==45 || i=«46 || i==47 II i==48 II i==49) continue;

for(k=0;k<13;k++)(
if(i >= startsectkl «s i

Bodypart = k;
break;))

stopsec[k]) t

/* CENTER VERTEX */
vertextO] = (Man[i][0][0] + Manti][1][0]) / 2.0;
vertex[1] = (Man[i][0][1] + Manti][3][1]) / 2.0;
vertex(2] - Man[i][0][2];
vertex[3) = 1.0;

/* HEIGHT */
height[0] = (Manti][0][0] + Manti][1][0]) / 2.0;
height[1] = (Manti][0][1] + Manti][3][1]) / 2.0;
height(2] = Man(i]t4][2];
height[3] = 1.0;

/* VECTOR A */
vecA[0] = Manti] [1] [0] ,-
vecAtl] = (Manti][0][1] + Manti][3][1]) / 2.0;
vecA[2) = Manti)[0][2];
vecA[3] = 1.0;

/* VECTOR B */
vecB[0] = (Manti][0][0] + Manti][1][0]) / 2.0;
vecBtl] = Manti][0][1];
vecB[2] = Manti][0][2];
vecB[3] = 1.0;

if(Bodypart < 8)(
if(Bodypart -= LEFT_LWR_ARM) (

articulate (i, currentangle2[LEFT_UPR_ARM],vertex,height,vecA,vecB,LEFT_UPR_ARM);
currentangle2[LEFT_LWR_ARM],vertex,height,vecA,vecB,-l);)

•= RIGHT_LWR_ARM) (
currentangle2[RIGHT_UPR_ARM],vertex,height,vecA.vecB,RIGHT_UPR_ARM);
currentangle2tRIGHT_LWR_ARM],vertex,height,vecA,vecB,-l); }

== LEFT_LMR_LEG) t
currentangle2 [LEFT_UPR_LEG], vertex, height, vecA, vecB, LEFT_UPR_LEG) ;
currentangle2[LEFT_LWR_LEG],vertex,height,vecA,vecB,-l);]

else if(Bodypart == RIGHT_LWR_LEG) I
articulate (i, currentangle2 [RIGHT_UPR_LEG] .vertex,height,vecA,vecB,RIGHT_UPR_LEG) ;
articulate (i, currentangle2[RIGHT_LWR_LEG]»vertex,height,vecA,vecB,-l); }

else t
articulate (i, currentangle2[Bodypart],vertex,height,vecA,vecB,-l); } }

articulate (i,
else if(Bodypart

articulate (i,
articulate (i,

else if(Bodypart
articulate (i,
articulate (i.

height[0] -= vertextO]
height[1] -= vertextl]
height[2] -= vertex[2]

vecA(0] — vertextO];
vecAtl] — vertextl];
vecA[2] -= vertex[2];

vecB[0] -= vertex[0];
vecB[l] -= vertextl];
vecB[2] —= vertex[2];

magA - sqrt (vecA[0] *vecA[0] + vecA[l]*vecA[l] + vecA[2]*vecA[2]) ;
magB = sqrt(vecB[0]*vecB[0] + vecBtl]*vecB(l] + vecB[2]*vecB[2]);

/+ Ivertexl Iheightl IvecA I IvecB I c d */
printfC'in sec8d tgc *f Sf *f If »f *f *f »f Sf »f 8f Sf *f

*f\n",i,vertex[0],vertex[l] .vertex [2], height [0], height [1] .height [2] ,vecA[0], vecAtl], vecA[2] ,vecB[0]
A,magB};]

]

void articulate (int Bodypart, int Degrees,float v[4], float h[4],float A[4],float B[4],int flag)

,vecBtl],vecB[2] ,mag

static float xlate[4][4], rotat[4][4];
static float tr[4][4], trt[4][4];
float angle;
int start,stop,l,]
float vt(4],vt2[4J
float ht[4],ht2[4]
float At[4),At2[4J
float Bt[4],Bt2[4]

,k,k2;

for(i=0,-i<4;i++){
vt[i] = v[i];
ht[i] = h[i];
Atti] - A[i];
BttiJ = B[i];

k2 = Bodypart;
for(k=0,-k<13;k++H

if(Bodypart >» startsec[k] ss Bodypart <=
Bodypart = k;
break; 1 1

stopsectk]) {

if(flag >= 0)
start = startsectflag];

else
start = startsec[Bodypart];

angle = (float) (Degrees •
/»currentangle[Bodypart]

currentangle[Bodypart])
= Degrees;*/

3.1415927 / 160.0;

switch (Bodypart) /* For upper limbs, articulate lower limb with it */

case LEFT_UPR_ARM:
case RIGHT_UPR_ARM:
case LEFT_UPR_LEG:
case RIGHT UPR_LEG:

stop = stopsec[LEFT_LWR_ARM]; break;
stop = stopsec[RIGHT_LWR_ARM]; break;
stop = stopsec[LEFT_LWR_LEG]; break;
stop = stopsec[RIGHT_LWR_LEG]; break;

xlate[0][0] = 1.0;
xlatetO][1] = 0.0;
xlatetO][2] = 0.0;
xlate[0][3] = -(Mantstart][0][0]

(Man[start][1][0]
xlatetl][0] = 0.0;
xlatetl][1] = 1.0;
xlate[l][2] = 0.0;
xlatetl][3] = -(Man[start][0][1]

(Mantstart][3][1]
xlate[2][0] = 0.0;
xlate[2][1] = 0.0;
xlate[2][2] = 1.0;
xlate[2][3] = -(Mantstart][0][2]

(Mantstart][3][2]
xlate[3][0] = 0.0;
xlate[3][1] = 0.0;
xlate[3][2] = 0.0;
xlate[3][3] = 1.0;

rotat[0][0] = 1.0;
rotat[0][1] = 0.0;
rotat[0][2] = 0.0;
rotat[0][3] = 0.0;
rotattl][0] ~ 0.0;
rotat[1][1] = cos(angle);
rotat[l][2] = -sin(angle);
rotattl][3] = 0.0;
rotat[2][0] = 0.0;
rotat[2][1] = sin(angle);
rotat[2][2] = cos(angle);
rotat[2][3] = 0.0;
rotat[3][0] = 0.0;
rotat[3][1] = 0.0;
rotat[3][2] = 0.0;
rotat[3][3] ■= 1.0;

matrixMult(srotat, sxlate, str);

xlate[0][0] = 1.0;
xlate[0][1] = 0.0;
xlate[0][2] = 0.0;
xlate[0][3] = -xlatetO][31;
xlate[l][0] = 0.0;
xlatetl][1] = 1.0;
xlate[l][2] = 0.0;
xlatetl][3] = -xlate[l][3];
xlate[2][0] = 0.0;
xlate[2][1] = 0.0;
xlate[2][2] *= 1.0;
xlate[2][3] = -xlate[2][3];
xlate[3][0) = 0.0;
xlate[3][1] = 0.0;
xlate[3][2] = 0.0;
xlate[3][3] - 1.0;

Mantstart][0][0]) / 2.0);

Mantstart][0][1]) / 2.0);

Mantstart][0][2]) / 2.0);

matrixMult(sxlate, «tr, strt);

matrixMult2(strt, «vt, Svt2);
matrixMult2(«trt, sht, Sht2);
matrixMult2(strt, «At, SAt2);
matrixMult2(«trt, SBt, sBt2);

/* Transform limb cross section points */
for (i=0; i<8; i++)

matrixMult2(5trt, sMan[k2][i], £Man2[k2](il);
for (j=0; j<4; j++)

Man[k2]tiHj] = Man2[k2][i][j];
}

for(i=0;i<4;i++){
v[i] = vt2[i];
h[i] ■= ht2[i];
A[i] = At2[il;
B[i] ■> Bt2[i];)

)
void matrixMult (float (»ml) [4][4], float (*m2)[4][4], float (»result)[4][4])
(

int i,j,k;
/» Multiply matricies ml and m2 and put the the product in result. */
/* ml and m2 must be 4 by 4 matricies */

for (i=0; i<4; i++)

<
for (j=0; j<4; j++)

1
(«result)[i][j) = 0;
for (k=0; k<4; k++)

(»result)[i][j] = (»result)[i][j] + (»ml)[i][k] * (*m2)[k][j];

)

void matrixMult2 (float (»ml)(4][4], float (»colvect)[4], float (»result)[4])
1

int i,j;
/* Multiply 4 by 4 matrix ml by the column vector colvect and put the */
/* product in result. */

for (i=0; i<4; i++)
(

(»result)[i] = 0;
for (j=0; j<4; j++)

(»result)[i] = (»result)[i] + (*ml)[i][j] * (»colvect)tj];

)

Virtual Reality and V&V Tools

Some of the tools in this category can be found in the draft report for V&V.

Figure 11- The Interactive Analysis environment in ProspectV2

However, the python script and an example image will be presented to show that a full
analysis method exist on the PC without use of BRL-CAD raytracing. In fact, one the
geometry is correct and used properly any raytrace that will give an accurate impact flag
on the appropriate polygon can be used. However, for uparmoring work it would be
prudent to use the same methodologies found in the Lethality / Vulnerability world to
describe the geometry and the materials.

Figure 11 shows the user environment generated by the script in the next
paragraph which is used to create the testroom simulation. This allows for full
"flythrough" capability and the ability to shoot any frag from the selected burst point and
man position.

from GuiTools import *
from Gui3DTools import *
from SEtreeTools import *
from PyOpenGL import *
from array import *
from math import *
import string

def Shutdown (WidgArg, UserArg) : ProspectExit();

def Refresh((WinWidg, JAV)):
if SEtree.Reconciled = 0:

Gui3D.RenderSetup(WinWidg);
Gui3D.Clear(WinWidg);

curbp = GuiSlider.GetValue(SLl_Widg);
curman - GuiSlider.GetValue (SL2_Widg) ;
curfrag = GuiSlider.GetValue(SL3_Widg);

curbpkey = num_bp - curbp;
curmankey = num_men - curman;
curfragkey ~ num_frags - curfrag;

glColor4f(1.0,0.0,0.0,1.0);
glLineWidth(2.0);
keysarrayfrag = frag.keys!)
keysarraybp = bp.keysO
keysarraymen = men.keys()
i «= len(keysarrayfrag)

i - i - 1

burstPoint - frag[keysarrayfrag[ij]
newbp = bp[keysarraybp[curbpkey))
manpos = men[keysarraymen!curmankey]]

node - SEtree.GetNodeByAbsNameC'TestRoom/manl");
SEtree.SetPositionlnode,(-manpos[01/1000.0+0.2676144 ,manpos[2]/1000.0-0.405384,manpos[1J/1000.0-0.1231392));

numFrag = burstPoint[0]
numFrag = int(numFrag) - 1

while numFrag >= 0:
tmpl = frag[keysarrayfrag[numFrag]]
glBegin(GL_LINES);

glvertex3f((-newbp[0]/1000. 0), (newbp[2]/1000.0), (newbp[11/1000.0));
glVertex3f((tmpl[0]*-0.0254), (tmpl[2]»0.0254), (tmpl[11«0.0254));
glEndO;

numFrag = numFrag - 1
tmpl - ();

tmpl " frag[keysarrayfrag[curfragkey]]
glBegin(GL_LINES);
glColor3f(0.0,1.0,0.0);
glVertex3f((-newbp[0)/1000.0), (newbp[2)/1000.0), (newbp[U/1000.0));
glVertex3f((tmpl[0]*-0.0254), (tmpl[21*0.0254), (tmpl[11*0.02541);
glEndO;

Gui3D.RenderSEtree(WinWidg, NULL);
Gui3D. SwapBuf fers (WinWidg) ;

return 0;

def Redraw(WidgArg, UserArg):
Gui3D. Set Callbacks (WidgArg, HO_CALLBACK, Gui3D.FlyerMB, Gui3D.FlyerMM, NO_USERARG) ;
Gui3D.SetProjection(WidgArg, 60.0, 45.0, 0.1, 1000.0);
Gui3D.SetViewpoint(WidgArg, (-11.0, 5.0, 0.0), (0.0, -30.0, -90.0));
Gui3D.SetLight(WidgArg, 0, (1.0, 0.9, 0.8, 0.0), (1.0, 1.0, 1.0));
GuiProc.AddTimer(0.01, Refresh, (WidgArg, JAV));
return;

def JAVControKNode, FrameNum, UserArg):
Pos = SEtree.GetPosition(Node)
Vel = SEtree.GetVelooity(Node)
NewVel = Vel[0] ;
if Pos[0] > 0.0:

NewVel = 0.00;
SEtree.SetAttitude(Node, (0.0, 90.0, 0.0));

elif Pos[0] < 0.0:
NewVel = 1.10;
SBtree.SetAttitude(Node, (0.0, 0.0, 90.0));

SEtree.SetVelocity(Node, (NewVel, Veltl], Vel[2]));
return;

def BP_CB (WidgArg, UserArg):
curbp = GuiSlider.GetValue(SLl_Widg);
curbp = curbp + 1;
string = str(curbp);
GuiLabel.RetitlelBPNumLabel, string);

curbpkey = nura_bp - (curbp-1)
keysarraybp = bp.keysf)
newbp = bp[keysarraybp[curbpkey]];

GuiScalarFloat.SetValue (BPwidgX, newbp[0]) ;
GuiScalarFloat. SetValue (BPwidgY, newbp [1]);
GuiScalarFloat.SetValue (BPwidgZ, newbp(2]) ;

Refresh((GLWidg,JAV));
return;

def Man_CB (WidgArg,UserArg):
curman = GuiSlider.GetValue (SL2_Widg) ;
curman = curman + 1;
string = str(curman);

GuiLabel.Retitle(ManNumLabel, string) ;

curmankey = num_men - (curman-1)
keysarraymen = men.keysO
newman - men[keysarraymen[curmankeyl] ;

GuiScalarFloat.SetValue(ManwidgX, newman[0]);
GuiScalarFloat.SetValue(ManwidgY, newman[1]);
GuiScalarFloat.SetValue(ManwidgZ, newman[2]);

Refresh((GLWidg,JAV));
return;

def Frag_CB(WidgArg,UserArg):
curfrag = GuiSlider.GetValue(SL3_Widg);
curfrag = curfrag + 1;
string = str(curfrag);

GuiLabel.Retitle(FragNumLabel, string);

curfragkey = num_frags - (curfrag-1)
keysarrayfrag = frag.keys()
newfrag - fraglkeysarrayfragtcurfragkey]];

GuiScalarFloat.SetValue(FragwidgX, newfrag[0]*25.4)
GuiScalarFloat.SetValue(FragwidgY, newfrag[1]*25.4)
GuiScalarFloat.SetValue(FragwidgZ, newfrag[2]*25.4)

Refresh((GLWidg,JAV));
return;

def Shoot_CB(WidgArg,UserArg):
Inpoint2 = {}
Outpoint2 = {}
DirVec = O
NewDirVec = {)

curbp = GuiSlider.GetValue(SLl_Widg);
curman = GuiSlider.GetValue(SL2_Widg);
curfrag = GuiSlider.GetValue(SL3_Widg);

curbpkey - num_bp - curbp;
curmankey = num_men - curman;
curfragkey = num_frags - curfrag;

keysarrayfrag = frag.keys()
keysarraybp = bp.keysO
keysarraymen = men.keysO

i = len(keysarrayfrag)
i = i - 1

burstPoint = frag[keysarrayfrag[i]]
newbp = bp[keysarraybp[curbpkey]]
newfrag = frag[keysarrayfrag(curfragkey]]
manpos = men[keysarraymen[curmankey]]

DirVec[0] = newfrag[0]*-0.0254 + newbp[0]/1000.0
DirVecil) = newfrag[1]*0.0254 - newbp[l]/1000.0
DirVec(2] = newfrag[2]*0.0254 - newbp[2]/1000.0

DirVecIO] = newfrag[OJ*-0.0254 + 0.0/1000.0
DirVec[l] = newfrag[l]»0.0254 - 0.0/1000.0
DirVec[2] - newfrag[2]«0.0254 - 1219.2/1000.0

magsqr = DirVec[01*DirVec[0]+ DirVec[1]»DirVec[11+DirVec[2]«DirVec(2]
magn = sqrt(magsqr)

NewDirVec[0] = DirVecIO] / magn;
NewDirVec[1] = DirVecII] / magn;
NewDirVec[2] = DirVec[2] / magn;

string = "DirVec *6.3f «6.3f 86.3f" S (-NewDirVec[0],NewDirVec[lI,NewDirVec[2])
GuiScrolledList.AppendValue(ScrolledList_Widg,string);

string = ();

Ray = ((-newbpI0]/1000.0,newbp[2]/1000.0,newbp[l]/1000.0),(NewDirVec[0],NewDirVec[2],NewDirVec[1]));
RTnode = SEtree.GetNodeByAbsName("TestRoom/manl");
Hit,Node,Inpoint,Inorm = SEtree.RaytraceSubtree(RTnode, Ray);
if Hit -= 1:

Ray - ((Inpointt0]+NewDirVec[0]*100.0,Inpoint[l]+NewDirVec[2]«100.0,Inpoint[2]+NewDirVec[l]*100.0), (-

NewDirVec[0],-NewDirVec[2],-NewDirVec[1]));
Hit2,Node2,Outpoint,Inorm2 = SEtree.RaytraceSubtree(RTnode,Ray);
string = "MAN «3d BP 13d Frag «3d" « (curman+l,curbp+l,curfrag+l)
GuiScrolledList.AppendValue(ScrolledList_Widg,string);
string = ();
GuiScrolledList.AppendValue (ScrolledList_Widg, "HIT") ;
Inpoint2I0] = -Inpoint[0]*1000.0 + 267.6144 - manpos[0]
Inpoint2[l] - Inpoint[l]*1000.0 + 405.3840 - manpos[2]
Inpoint2[2] = Inpoint[2]»1000.0 + 123.1392 - manpos[l)
string - "Inhit 86.3f *6.3f 86.3f" 8 (Inpoint2[0],Inpoint2[2),Inpoint2[1])
GuiScrolledList.AppendValue(ScrolledList_Widg,string);
string = ();
if Hit2 — 1:

Outpoint2[0] ■= -Outpoint[0]*1000.0 + 267.6144 - manpos[0]
Outpoint2[l] = Outpoint[l]*1000.0 + 405.3840 - manpos[2]
Outpoint2[2] = Outpoint(2]*1000.0 + 123.1392 - manpos[l]
string» "Outhit 86.3f 86.3f 86.3f" 8 (Outpoint2[0],Outpoint2[2],Outpoint2[1))
GuiScrolledList.AppendValue (ScrolledList_Widg, string) ;
string = 0;

elif Hit2 — 0:
GuiScrolledList.AppendValue (ScrolledList_Widg, "NO OUTPOINT?!!") ;

elif Hit = 0:
string = "MAN 83d BP «3d Frag 83d" 8 (curman+l,curbp+l,curfrag+l)
GuiScrolledList.AppendValue (ScrolledList_Widg, string) ;
string = ();
GuiScrolledList.AppendValue (ScrolledList_Widg, "MISS") ;

GuiScrolledList.AppendValue(ScrolledList_Widg,"");
return;

def OpenDataFile(associativeArray, fileName):
k = 0
for line in open(fileName, 'r'J.readlinesO:

tmp = string.split(line)
for j in range(len(tmp)):

tmplj] = float(tmp[j])
associative?.rray[k] = tmp
k = k+ 1

return k;

def main(ArgC, ArgV):
global JAV;
global frag, bp,men, nura_frags, num_bp, num_men;
global SLl_Midg, BPNumLabel.GLWidg;
global SL2_Widg, ManNumLabel;
global SL3_Widg, FragNumLabel;
global BPwidgX, BPwidgY, BPwidgZ;
global ManwidgX, ManwidgY, ManwidgZ;
global FragwidgX, FragwidgY, FragwidgZ;
global ScrolledList_Widg

frag = ()
bp = ()
men - (}

num_frags = OpenDataFile(frag, "6dc05.3dp")
num_frags = OpenDataFile(frag, "chris.3dp")

num_bp = OpenDataFile(bp, "bppos.txt")
num men = OpenDataFile(men,"manpos.txt")

num_frags = num_frags - 2
num_bp = num_bp - 1
num_men = num_men - 1

SEtree.AddSubtree(NULL, "TestRoom", "TestRoom/SEtreeBuild") ;
JAV = SEtree.GetNodeByAbsName ("TestRoom/missile") ;
#SEtree.SetVelocity(JAV, (1.0, 0.0, 0.0));
SEtree.SetAttitude(JAV, (0.0, 0.0, 90.0));

WinWidg » Guiwindow.Create ("TestRoom", 990, 500, "lighttest.gif". Shutdown, NO_USERARG) ;

GLWidg = Gui3D.Create(WinWidg,10,10,640,480,Redraw,NO_CALLBACK,NO_CALLBACK, JAV) ;

GuiButton.Create(WinWidg, 660, 440,155,50, "Shoot",Shoot JB,NOJJSERARG) ;
GuiButton.Create(WinWidg,825,440,155,50,»Exit",Shutdown,NOJJSERARG>;

GuiLabel.Create(WinWidg,660,10,"Burst Point:");
RPNumLabel = GuiLabel.Create (WinWidg,750,10, "1"); „„„„,
SLljSidg - GuiSlider.Create(WinWidg,660,40,320,20,HORIZONTAL,0,num_bp,BP_CB,NO_USERARG) ;

GuiLabel.Create(WinWidg,660,70,"Man Position:");

GuiLabel.Create(WinWidg,660,130,"Frag Position:");
FraqNumLabel = GuiLabel.Create (WinWidg,750,130, "1"); „„„„„,,,.,.
SL3jJidg = GuiSlider.Create (WinWidg, 660,160,320,20,HORIZONTAL^,numjrags. Frag JB, NOJJSERARG) ,

BPwidgX = GuiScalarFloat. Create (WinWidg, 780,10, 60, NOJDIT, NOJALLBACK, NOJJSERARG) ;
BP^idqY = GuiScalarFloat.Create(WinWidg,850,10,60,NOJDIT.NOJALLBACK.NOJJSERARG) ;
BPwidgZ = GuiScalarFloat.Create (WinWidg, 920,10, 60, NO_EDIT,NO_CALLBACK, NOJJSERARG) :

ManwidaX = GuiScalarFloat.Create (WinWidg,760,70, 60,NOJSDIT,NOJALLBACK,NOJJSERARG) ;
towidgY - GuiScalarFloat.Create (WinWidg, 850,70,60,NO_EDIT,NO_CALLBACK,NO USERARG ;
SidgZ = GuiScalarFloat.Create(WinWidg,920,70,60,NOJ5DIT,NO_CALLBACK,NOJISERARG);

FragwidgX = GuiScalarFloat.Create(WinWidg,780,130, 60,NO_EDIT,NO_CALLBACK,NO USERARG) ;
FramidgY = GuiScalarFloat. Create (WinWidg, 850,130, 60, N0J5DIT, NOJ7ALLBACK, NOJJSERARG ;
FragZidgZ = GuiScalarFloat.Create (WinWidg, 920,130, 60,NOJ3DIT, NOJALLBACK, NOJJSERARG) ;

ScrolledList_Widg = GuiScrolledList. Create (WinWidg, 660,200, 320,230, NOJALLBACK, NOJALLBACK, NOJJSERARG) ;

GuiSlider.SetValue(SLl_Widg, 0) ;
GuiSlider.SetValue(SL2_Widg,0);
GuiSlider.SetValue(SL3_Widg,0);

GuiTree.Map (WinWidg);

Conclusions

This report documents the efforts under this task. All data is in the possession of
the COTR for the respective tasks. This work has produced several tools which should
help add capability in the assessment of Incapacitation in MOUT analysis. Many of the
modules created under this effort have applicability to other Army work outside of this
program. It is hoped that these tools will be widely distributed to any user who has a valid
requirement.

APPENDIX I -V&VPlan

DRAFT

VERIFICATION AND VALIDATION
PLAN FOR 3DPIMMSMAN COMPUTER CODE

1.0 Purpose

In FY99, the US Army Aviation and Missile Command (AMCOM) has been
tasked by the MPIM/SRAW Program to provide the Verification and Validation (V&V)
of the 3DPimmsMan simulation. AMSAA agreed to critique the AMCOM efforts since
the effort benefits not only the Army MPIM/SRAW program but also any future systems
that will need to evaluate their performance against bunkers and buildings. This
document will serve as the baseline V&V Plan.

2.0 Background

2.1 General Information

The utilization of simulations provides the government a valuable tool to perform
system's analyses to characterize the performance of a missile system. Given the
Department of Defense (DoD) shrinking budgets simulations have become the mainstay
to study and evaluate system performance. The MPIM/SRAW program is a shoulder
launched weapon system designed to incapacitate personnel in a bunker, concrete or triple
brick building or light armored vehicle (MOUT scenario). Since, MOUT operations have
become a larger percentage of the projected types of combat situations which may be
presented to the U.S. military, high resolution tools are required to evaluate missile
system performance. An illustration of these types of targets can be seen in Figure 1-3.

Sj^B" r%,'%'.7B3asnaH

"^'■■m

^tfflßl^^M^&^M
P'- '.','

W. ■

\ ,.'?• 'f^
BgjjjMfegg? *r* IM

- • ii iM^ms^'i^^z
■'■fyfO*

f./' * l \ /", -,

Figure 1 - A Bunker

X " ' -ts^l^^w^ !t

^^B; ^flal K:
^^^H *?^^^H H'l •
^^^Hi % ^P^lflfl ^■\ \

^H- ;^H

Figure- 3 Triple brick

Figure - 2 A Room Target with Door

In the past the Probability of Incapacitation
Methodology for Masonry Structures (PIMMS) has been
the code of choice by AMSAA for the lethality analysis of
bunkers and buildings. Fragmentation data is collected at
the time of a test by lining the bunker or room with witness
panels which record the location of each lethal fragment.
Utilizing the PIMMS code any fragment that completely
penetrates the witness panels is counted as lethal. PIMMS

DRAFT

DRAFT

models the crouching man as a cylinder and uses a fragment density number per steradian
in order to calculate Probability of Incapacitation (Pi) for each possible man location
within the room or bunker. The code then marches the burst point location around the
room in one foot increments and calculates the Pi for each possible burst point location.
These 256 burst points are averaged to come up with an overall Pi for each set of test
data. This code is a legacy code but there has been V&V of a Point and Click and a
Light Table data interface program to the 2D code (See attached Appendix A, report by
Windsor Jones, AMS AA)) The original methodology and requirements for the PIMMS
code are spelled out in CSC TR-81-5692. (Probability of Incapacitation Methodology for
Masonry structures)

In FY97 AMCOM developed an improved version of the PIMMS code. This code
rejects the assumption of a lethal fragment which is present in the 2D PIMMS
methodology. Instead an automated wound ballistics approach is implemented to decide
if a fragment trace would produce incapacitation of a human in the path. The
3DpimmsMan employs the BRL Raytrace software and the BRL ComputerMan code in a
three Dimensional environment. The Documentation for this software can be found in
Appendix I, UAH Report #5 -34381. The data collection procedure is done exactly the
same as it was for the 2-D environment. However, since the lethal fragment assumption is
being rejected, any roughly equivalent thickness panels could be used if methods are
utilized to determine fragment velocity distribution. The BRL Raytrace software provides
the capability to trace a fragment from a given burst point to it's exit x,y and z location
within the room. The BRL ComputerMan code consists of a tissue data base and velocity
retardation coefficients for a standard man. This code in it's standard GUI
implementation allows you to input entry and exit wound locations for a given fragment
on a single man and output a Pi. The 3DpimmsMan code is essentially a simulation
which provides the bookkeeping required to take the x,y, and z locations of each fragment
within the room, raytrace each and every fragment from the estimated burst point
location, track the fragment through an actual 3-D tissue database of a man (derived from
a batch mode implementation of the ComputerMan code). The pmssub subroutine keeps
track of the fragment velocity retardation as the fragment travels through different tissue
types and the output reports the extent of the man's injuries and incapacitation levels.
This is done for each fragment, for each possible burst point location and for all possible
man positions within the room. The same procedure is followed for averaging the Pi's for
each possible burst point location.

2.2 Configuration Control

During the V&V process a Configuration Control Board will be implemented.
Ms. Edith Crow of AMCOM will serve as the Chairperson with Mr. Brian Sabourin
serving as Project Office lead. Mr. Glenn Romanczuk and Mr. Chris Pitts will also be on
the board. The Board will determine what type of revision control is used and the
available version of the code.

DRAFT

DRAFT

The 3Dpimms methodology does draw from ARL generated and controlled
software tools. These two codes are the BRLCAD set of Raytrace tools and the wound
ballistics model BRL ComputerMan. These codes are controlled and distributed by ARL
under an ARL Licence agreement. The Versions of the libraries for these two codes will
be spelled out in all documentation and will be required for the use of this tool.

2.2 Identification of Agencies

Systems Simulation and Development Directorate, Aeroballistics Analysis
Functional Area, (Ms. Edith W. Crow and UAH support Contractors) were tasked to
support the MPIM Project to provide lethality analysis. As a result of providing support
in this area over the years question were raised by customers about what other analysis
tools were available which would provide the most realistic results for fragmentation and
allow for additional insults to be credited. The evolution of the analysis brought about
the investigation of employing the BRL-CAD Raytrace software and the ARL
ComputerMan model since this would provide the first opportunity to do this analysis in
a 3-Dimensional environment. This modification allows floor fragments to enter the
analytical process as well as allow other secondary incapacitation insults to be evaluated.
The following table shows the responsibilities of each agency involved.

AGENCY Software RESPONSIBILITIES

AMCOM

3DpimmsMan

Verification and Validation

EAC Accreditation

AMSAA

2 D PIMMS

Verification and Validation

EAC Accreditation

ARL BRL Raytrace
ComputerMan

Accepted Methodologies

Photos

2D Pimms/Picodel

BRL-CAD
Raytracing

3DPimms

Thermal Test
\ Data

ORCA

Pressure Transducer
Data

BLASTX

3DP-ORCA

>V

DRAFT

DRAFT

Figure 4 shows the proposed progression of the Analysis methodology.
3.0 Intended Use of 3DpimmsMan

The major program objectives are to provide a state-of-the-art lethality analysis toolkit
for the evaluation of personnel incapacitation in bunkers and buildings. This tool will
provide the many-on-many level of analysis which is required. This new analysis tool
will pave the way for the evaluation of other insults such as thermal, overpressure, toxic
gases, etc. The new tool also more accurately describes the test data that has been
collected and applies it to an actual 3-D room. The 3D methodology allows for the
evaluation of arena test data (JMEM) which could not be evaluated using the 2-D PIMMS
code. Figure 4 shows the evolution of the analysis code from a 2 dimensional statistical
tool into a high resolution, physics based incapacitation code for multiple insults. It is
important to note that if the ORCA code which is also undergoing VV&A in 1999, is not
ready for inclusion into this analytical process then the underlying submodels which
ORCA draws upon could be used to extend the 3Dpimms code to handle the additional
insults required.

4.0 Data Collection

Data collection methodology for the 3DpimmsMan is currently done in accordance
with the 2D PIMMS data collection. PIMMS data is collected and analyzed in a specific
manner, reference 1, and not in the more familiar manner used in the Joint Munitions
Effectiveness manual (JMEM). The fragmentation data used for PIMMS incorporates
wall debris and lethal fragments. The fragmentation data does not address fragment
mass, velocity or shape. However, the Light table collection technique does provide the
analyst with the presented area of each fragment. Only the number of lethal fragments in
a geometrical region are used in the 2D code. However, the 3D software would be
capable of using other types of data such as the arena test data (JMEM Data). Fragment
mass, velocity and shape data could be used to characterize each set of test data if arena
test data is available. Also, the analyst is called upon to enter an average mass and
velocity of the fragments which can be gathered from hydrocode calculation or from
experimental techniques.

5.0 Verification and Validation (V&V) Plan

According to Department of the Army Pamphlet 5-11, verification is the process of
determining that a model or simulation represents the developer's conceptual description
and specifications and meets the needs stated in the requirements document. The
verification process thereby establishes whether the model or simulation code and logic
correctly perform the intended functions. Validation is the process of determining the
extent to which a model or simulation accurately represents the real world phenomena
from the perspective of the intended use of the model or simulation. In this section, an
attempt will be made to formulate a plan of action that will be taken to effectively verify
and validate 3DpimmsMan for it's use as an evaluation tool for incapacitation of
personnel in MOUT structures.

DRAFT

DRAFT

5.1 Definitions

In an effort to assist the reader in understanding the V&V process, an explanation of
the techniques follows:

Documentation reviews - This review ensures that the design and specifications
encompass the model or simulation requirements and that they represent a balanced and
correct approach. It also includes reviewing the specification document, design
documentation, and code to ensure that all of the requirements are addressed in an
appropriate and complete manner.

Functional decomposition - Decomposing the model or simulation into functional
components is often a great aid in the validation process. A detailed examination of the
documentation, code and output to determine that validity of the decomposed model or
simulation is executed. Then an analysis of how well the pieces fit together is
accomplished, with the result being an overall validation of the model or simulation.
Decomposition of the model or simulation should be sensitive to the intended use of the
model or simulation as this may drive the functional split and the level to which the
decomposition is done.

Algorithm check - This involves inspection of design documents to compare equation
and algorithm methodology to outside documentation. A key issue here is determining
whether the documented equations match those found in other publications or other
successful model or simulations.

Sensitivity analysis - This is a check of the algorithms and code to ensure that the model
or simulation is reacting to varying sets of input in an expected, mathematically
predictable manner. These analyses include preparing and running tests to compare
results for systematically varied sets of input data to see if the expected trends in output
are demonstrated.

Units check - This is a check to ensure that the proper units of measure result from
equations in the algorithms and code.

Graphics playback - This technique allows the analyst to see the model simulations
behavior graphically. This is particularly useful for visualizing input fragment panel data,
entry and exit wounds, and fragment distribution patterns.

This list of V&V techniques is not conclusive but represent a sufficient subset to be used
in the analysis of 3DpimmsMan for accreditation.

DRAFT

DRAFT

5.2 3DpimmsMan

5.2.1 Description

Program approach and methodology summary

The methodology utilized can be summarized in three parts. The first part is the burst
point logic and bookkeeping from the legacy code PIMMS. This part details the creation
of man locations in the room and bunker.
Also, it models the creation of burst points
given the user inputs. .JS"

The second part of the methodology - ,s (Js^ " .
takes the input of the fragment location per ^ t?^}
panel and produces an x,y,z base upon the MM

room coordinate frame. Then fragments are P^T
raytraced utilizing BRL-CAD Raytrace tools J»]]P jj
to produce an entry and exit wound path ■ 1
through a crouching man geometry in one of 1 **
the possible man locations. Rst point versus ,§
the location of the man in the room. It is ■*•
assumed that there is only one man at a
random location in the room. Therefore it is not necessary to raytrace a full room. In
fact, the code utilizes the man in a stationary manner and offsets the origin of the ray
based upon the ray burst point versus the
location of the man in the room. This is done Figure 5 - The Bbman geometry
for all fragments to determine which
fragments strike person in that position given the fragment data. The crouching man
geometry must be an exact match of the geometry utilized in the wound ballistics model
ComputerMan. Figure 5 shows a rendering of the man geometry which will be verified.

The third part is the incapacitation subroutine. This subroutine is a batch mode
version of the ComputerMan routine. However, it has been augmented to handle several
wound paths before the determination of incapacitation is output. The inputs that are
required include the array of entry and exit points and the number of wounds on each
man. There a a number of items which need to be verified to assure that the wound
ballistics model is being properly employed. In the development of the subroutine
version of pmssub a standalone version was also coded. This version will be run to check
output of the pmssub routine.

DRAFT

DRAFT

5.2.2 Plan

Overall Verification and Validation Objectives

The overall V&V objectives are presented in the following paragraphs.

'The overall objective of V&V of the 3DPimms is to ensure that the simulation
models real-world behaviors and assesses the Probability of Incapacitation for personnel
in masonry structures and Earth &Timber Bunkers to an acceptable level of accuracy in
the many-on-many case. Meeting this requirement will provide an analytical tool which
can be used for determination of a systems ability to meet a specified ROC requirements
for Incapacitation probability.'

'The process to achieve this overall objective will include exercising the
simulations and comparing the results with the current 2D Pimms simulation given the
limitations and assumptions inherent in the 2D methodology'. The primary comparison
to the 2D methodology will explore those areas of similarity and will report probable
explanations for differences which may be found.

Several elements are listed in the V&V Plan as items to be required for V&V.
These items were simulation configuration management, documentation of the
simulation, verification documentation and validation documentation.

5.2.3 V&V Test Matrix
In an effort to better assist the reader in understanding the process that will be

used to V&V 3DpimmsMan, Figure 6 graphically describes the process. AMCOM will
perform the V&V activities for the 3DpimmsMan and AMSAA's 2D PIMMS V&V
documentation will be used to support these results.

Under the modeling and simulation (M&S) acceptability criteria, nine
requirement
areas were identified which are required to V&V the 3Dpimms code.

Requirement
Area

1

Description

Simulation must accurately load fragment witness panel data
and convert the panel data to a room coordinate frame.
Graphical
3 D representation must be able to represent these results.
Simulation must accurately position the man within the room

DRAFT

r
DRAFT

Requirement
Area

Description

and calculate man locations for different size rooms. User
must prove that man location relative to burst point location is
represented accurately and must also provide graphical output
to represent these results.

3 Simulation must prove that fragment path , entry and exit
wound position in the Crouching man frame of reference, data
is accounted for properly in the call to the incapacitation
subroutine. User must demonstrate this by a graphical
representation of Raytrace position to support this function.

4 The simulation must accurately provide bookkeeping for Pi
for each person within the room and demonstrate that arrays of
data are loaded properly. Commented code loops and output
should be used to explore this requirement.

5 The simulation must provide credible results that intuitively
match expected results for a sample set of shots. This includes
low and high fragment cases.

6 The simulation must accurately position the burst point matrix
based upon the user inputs for size of room and step size.

7 Deviations from 2D results must be explained for a sample set
of 3D data.

8 Simulation must accurately calculate the room coordinates for
fragments from the input panel x,y data per panel.

9 Simulation must prove that the fragment input data to the
incapacitation module is consistent with fragments witnessed
in test.

Figure 6 - The V&V Requirements Table

DRAFT

DRAFT

5.3 V&V Process Summary

Figure 7 documents the specific parts of the 3dp.c code which must be evaluated
using the methods in the V&V methods section. The description of each part of the code
is presented and will be included in the documentation of the V&V efforts. The
methods listed and maybe also a few additional techniques will be utilized to verify and
validate the program modules which are listed in Figure 7. Graphical tools will be used
when appropriate. Also, MathCad worksheets and code traces with print statements and
loop counters will be used to test structure and verify functionality.

Algorithm/Module Description V&V Methods
Ment Structure Main structure which

stores man locations and
incapacitation

• Document Review
• Funcional

Decomposition
• Algorithm Checks
• Sensitivity Analysis
• Units Checks
• Graphics Playback

Readconfig Subroutine to read setup
information

Incap_calc The main calculation
subroutine given a config
file and a frag file

Loadfragdata Reads the panel data and
converts 2D to 3D to feed
raytrace

Calcmanjpositions Calculates the positions of
the men in the room based
on room size.

Calcbppositions Calculates the burst point
locations within the room
based on step sizes and
wall sizes.

Rt shootray Given inputs shoots ray
Cmanincap Calculates the

incapacitation given a
number of hits and the
entry and exit points.

hit Rtshootray subroutine
for inpacts on geometry

miss Rtshootray subrountine
for ray misses on
geometry

DRAFT

DRAFT

Print front matrix Prints the given output
Print side matrix matrix
Printfronttwomanmat
rix
Printsnipermatrix
Print side twoman
Printsidesniper
uniform Returns a uniform

distribution between the
min and max values that
are input

Figure 7 - The Specific routines in 3DP to be evaluated for verification and
validation

Figure 8 is a logic diagram of the entire 3DP.C code. This is a statement by
statement description of the execution logic in 3DP. This logic will be checked with code
traces using counters and output of matrix and structure information. This data will be
visualized with a number of techniques.

DRAFT

DRAFT

1) read config file
a) reads in config file info: min frag mass, max frag mass, min frag velocity, max frag velocity, frag shape factor,

frag density, man geometry flag (crouching or standing), man protection value, room flag and wall sizes
(front and side), room step size, impact flag, twoman flag, sniper flag, use floor flag, attack angle

b) set up frag array with uniform distribution of mass and velocity
2) load appropriate mged file and prep it for ray tracing

a) load either crouching or standing mged man model
3) load frag file

a) reads in frag data from various formats (old 2d, 2d gin, 3dp)
4) set up run monitor file and info
5) set up ray trace parameters
6) calculate positions of men in room based on room size and man size

a) based on man width and man depth and front wall length and side wall length
b) calculate positions for each man inside room with equal spacing from walls

7) do front shot
a) calculate burst point locations in room based on step size

I. based on step size and room size
II. calculate positions for each burst point
III. set flag for feasibility (checked with attack angle)

b) set nbp (number of feasible burst points for averaging)
c) front shot loop

for each man position in the room {
for each burst point location in the room {

if it is a feasible burst point {
calculate burst point origin relative to man position and translate to match mged man

. I. using man offset values from the mged file calculate burst point origin as
MGED MAN OFFSET - (ROOM MAN LOCATION - BURST POINTLOCATION)

set number of hits to 0 for this man at this bp
for each frag {

calculate directional cosines for frag path from burst point origin
I. directional cosines calculated from initial burst point location and

impact location of frag on witness panels (rotated 90 degrees for side shot)
fire shotline
if shotline hit man {

save X,Y,Z for inhit and outhit locations and increment hit counter

}

assign incapacitation value for this man and this burst point location with computer man subroutine
and inhit/outhit locations, calculate total incap value for this man

}
}

divide total incap value for this man by nbp
update run monitor file

}
d) calculate total incapacitation value for front shot

8) do side shot (just like front shot only rotated 90 degrees)
9) print output
10) remove run monitor file
11) exit program

Figure 8 - The logic diagram for the 3DP.C code

DRAFT

DRAFT

5.4 2D PIMMS

5.4.1 History

The PICODE and PINFIB programs were designed and developed by Mr. Larry Losie
of BRL. The PICODE program provides incapacitation probabilities for attacks on
personnel inside masonry structures using impact fuzed munitions. An impact fuzed
munition bursts at the point of contact with the exterior wall of the structure. The
PINFIB program evaluates a program identical to that of PICODE except delay fuzed
munitions are used for the attack. Computer Sciences Corporation of Huntsville,
Alabama was placed under contract to produce the PIMMS program by merging or
combining PICODE and PINFIB, and to provide documentation for the new program,
PIMMS.

The PINFIB program was used as the basic structure for the PIMMS program. Logic
and algorithms peculiar to PICODE were placed in the existing PINFIB code. These
logic and algorithm were fully integrated into the PINFIB program logic to avoid
producing a new program consisting of a collection of "patches".

As a result, the PIMMS program is the integration rather than the attachment of
PICODE and PINFIB. The PIMMS program retains both the capability and flexibility of
PICODE and PINFIB. Its code is well commented and it has convenient input data
structure. Only minor improvements were made to the program logic provided to CSC.
These changes were primarily cosmetic in nature.

5.4.2 Methodology

The room is filled with men for each attack. A cylinder of specified diameter and
vertical cross-sectional area is used to represent a man. A sequence of burst points at a
fixed interval along the wall is evaluated in a wall attack using impact fuzed munitions.
A matrix of burst points covering the room (in the horizontal plane) is evaluated when
delay fuzed munitions are used in a wall attack. Attack orientation or direction relative to
the wall is an input value. Fragment data about the burst point are input in five-degree
zones relative to the attack or shot direction. For each munition burst point, an
incapacitation determination is made for each man in the room. A man is considered
incapacitated when struck by one or more lethal fragments. When this criterion is not
satisfied, the man is considered undamaged by the burst. Both the number of
incapacitated men and their room locations are stored for each munition burst point.
Attacks on each wall of the room are evaluated.

After the attack has been evaluated, probability of incapacitation data are generated for
each room wall. Probability of incapacitation for a randomly located man from a given
burst point is computed as the ratio of the number of incapacitated men to the number of

DRAFT

DRAFT

men in the room. Average and cumulative average probability of incapacitation data for a
randomly located man are also provided for each wall attack.

Two of the man locations in the room are designated as the two man firing position.
Three of the man locations are designated as possible locations for a sniper. Probability
of incapacitation data are generated for the sniper and the two man firing team as a user
option. The nominal configuration of the structure is an enclosed room (without
windows or doors). However, when impact fuzed munitions are used in the attack and
the sniper or two man options are selected, the sniper or two man incapacitation
probabilities are computed both with and without a window in the front wall.

5.4.3 PIMMS V&V

The PIMMS VV&A is concurrently being completed by EAC. The original V&V
plan and V&V documentation was written by Mr. Windsor Jones of AMSAA and was
near completion when the effort was shelved due to program reorganization. Ms. Kathy
Fontaine, EAC, has resurrected this effort and it is near completion at this time.

6.0 Accreditation Plan

EAC will be responsible for the accreditation plan and actual accreditation. As the
system evaluator EAC is responsible to accredit each simulation for fitness to this task.

6.1 Acceptability Criteria

This section will address the criteria that 3DpimmsMan must meet to determine if it
is suitable for its intended use. According to DA PAM 5-11, "Verification,
Validation and Accreditation of Army model and simulation", failure of a model or
simulation in achieving a particular acceptabiltiy criterion does not automatically
result in the model or simulation not being accredited. Such an occurrence may
result in an evaluation of the criticality of the criterion to overall success and merely
serve to restrict the range of applicability of the problem. The following criteria will
be used to determine 3DpimmsMan acceptablity in the analytical communtiy as an
evaluation tool:

• 3DpimmsMan is suitable for determining the effectiveness of indirect fire munitions
against personnel within masonry structures, i.e., reinforced concrete, brick and earth
and timber bunkers.

• The definition of incapacitation used in 3DpimmsMan is sufficient in accessing the
degradation level of personnel located within masonry structures and is a higher
resolution calculation than that achieved in 2DPimms.

DRAFT

DRAFT

• The output of 3DpimmsMan, quantitatively and graphical, may be used clearly,
adequately and appropriately to address how well an indirect fire munition performs
against personnel within masonry structures.

• Required data values are well defined and data sources for obtaining data have been
identified.

• The algorithms, methodology and environment representations are functioally
adequate to address the issues.

EAC will be the agency responsible for addressing the stated criteria and performing
the accreditation of 3DpimmsMan for its intended use. The efforts of accrediting
3DpimmsMan will be documented in a VV&A report.

7.0 Milestone schedule

The following is the proposed schedule that will be followed for the verification,
validation and accreditation of 3DpimmsMan:

3DpimmsMan VV&A Schedule

Approved V&V Plan AUG 1, 1999
3DpimmsMan V&V Efforts SEPT 1, 1999
Draft V&V Report OCT 1,1999
Final V&V Report DEC 1,1999
Accreditation Plan FEB 1, 2000
Draft VV&A Report APR 1, 2000
Final VV&A Report MAY 1, 2000

DRAFT

DRAFT

Flow Diagram
read conf

DRAFT

DRAFT

i fp =fopen /
/ config file -

/ fprintf
/ stderr

fscanf
frag_mass_min,
frag_mass_max

frag_vel_min,
frag_vel_max,

frag_dens

, r.
I exit 1

stop

/

fscanf
man_geom

man_protect
room

FRONT_WALL =
SIDE_WALL = 16.0

*FT2MM

frag[0][i] =uniform mass
frag[3][i] =uniform vel

frag[2][i] =
frag_shape_factor

frag[1][i] = frag_dens

i++

fscanf /
FRONT_WALL /

SIDE WALL /

FRONT_WALL =
SIDE_WALL = 4.0

*FT2MM

FRONTJA/ALL *= FT2MM
SIDE WALL *= FT2MM

fscanf
room_step

/ fscanf TWOMAN
/ SNIPER

/ USE_FLOOR
/ ATTACK ANGLE

 _.i

/ close fp
/

stop

STEPWL= STEPIN = room_step *
FT2MM

DRAFT

DRAFT

read conf

Flow Diagram
Calc_man_positions

DRAFT

DRAFT

calculate
num_across,num_deep,space_across,

space_deep

num men = k

stop

k=0

i++

-yes-

calcülate

j=o

-yes-

calculate x

men[k].position[0] =x
men[k].position[1] =y

men[k].position[3] =0.0

++k

j++

0
Calculate Man Positions

DRAFT

DRAFT

Flow Diagram
calc_bp_positions

DRAFT

DRAFT

calculate num_across,
num_deep,space_across,

space_deep

k = 0
ok = TRUE

calculate
pos

-yes-

num+deep
= 1

Calculate Burst Point Positions

DRAFT

DRAFT

Flow Diagrams
Loadfrag

DRAFT

DRAFT

DRAFT

DRAFT

i = fscanf(num_frag,initial_burst_pt[0],
initial_burst_pt[1],initial_burst_pt[2]

(3d frag j

fscanf at_vect[0],
at_vect[1], at_vect[2]

j=0

i++

VSUB(frag_dirs[i],at_vect,initial_burst_pt)
VUNITIZE(frag_dirs[i])

j++

DRAFT

DRAFT

i 3dp
\

i = fscanf(num_frag,initial_burst_pt[0],
initial_burst_pt[1],initial_burst_pt[2]

yes-

r exit 1 !

I
▼

(stop

initial_burst_pt[i] *= IN2MM

i++

yes-

fscanf at_vect[0],
at_vect[1], at_vect[2]

VSUB(frag_dirs[i],at_vect,initial_burst_pt)
VUNITIZE(frag_dirs[i])

j++

DRAFT

DRAFT

DRAFT

DRAFT

j= num_frag = 0

initial_burst_pt[0]=initial_burst_pt[1]
=initial_burst_pt[2] = 48.0*IN2MM

-yes-

num_frag +=
num hits

fscanf
in[0],in[1]

in[o] *= IN2MM
in[1]*=IN2MM

VSUB2(frag_dirsü],at_vect,initial_burst_pt)
VUNITIZE(frag_dirs[j])

I
++J

i++

DRAFT

DRAFT

yes*|
at_vect[0]=(SIDE_WALL/2.0) - in[0]

at_vec[1] = -FRONT_WALL/2.0
at_vect[2] = in[1]

J

-yes*
at_vect[0]=(SIDE_WALL/2.0) -PANEL_WIDTH -in[0]

at_vect[1] = -FRONT.WALL/2.0
at_vect[2] = in[1];

at_vect[0]= -in[0]
at_vect[1] = -FRONT_WALU2.0

at_vect[2] = in[1];

at_vect[0]=-PANEL_WIDTH -in[0]
at_vect[1] = -FRONT_WALU2.0

at_vect[2] = in[1];

yes*
at_vect[0]=-SIDE_WALL/2.0

at_vect[1] = -FRONT_WALL/2.0 +in[0]
at_vect[2] = in[1];

J

at_vect[0]=-SIDE_WALU2.0
at_vect[1] = -FRONT_ WALL/2.0 + PANEL_WIDTH <

in[0]
at_vect[2] = in[1];

■yes*

yes*

yes*

yes*

at_vect[0]=-SIDE_WALL/2.0
at_vect[1] = in[0];
at_vect[2] = in[1];

at_vect[0]=-SIDE_WALL/2.0
at_vect[1] = PANEL_WIDTH + in[0]

at_vect[2] = in[1];

at_vect[0]=-SIDE_WALL/2.0 + in[0]
at_vect[1] = FRONT_WALL/2.0

at_vect[2] = in[1);

at_vect[0]=-SIDE_WALL/2.0 + PANEL_WIDTH ■
in[0]

at_vect[1] = PANEL_WIDTH + in[0]
at_vect[2] = in[1];

at_vect[0]=in[0]
at_vect[1] = FRONT_WALU2.0

at_vect[2] = in[1];

at_vect[0]=PANEL_WIDTH + in[0]
at_vect[1] = FRONT_WALL/2.0

at_vect[2] = in[1];

at_vect[0]=-SIDE_WALL/2.0
at_vect[1] = FRONT_WALL/2.0-PANEL_WIDTH -

in[0]
at_vect[2] = in[1];

at_vect[0]=-SIDE_WALL/2.0
at_vect[1] =-in[0]
at_vect[2] = in[1];

at_vect[0]=-SIDE_WALL/2.0
at_vect[1] = -PANEL_WIDTH -in[0]

at_vect[2] = in[1];

at_vect[0]=-in[1]
at_vect[1] = -FRONT_WALL/2.0 +in[0]

at_vect[2] =0.0;

at_vect[0]=-in[1]
at_vect[1] = -FRONT_WALL/2.0-PANEL_WIDTH -

in[0]
at_vect[2] =0.0;

at_vect[0]=-in[1]
at_vect[1] = in[0]
at_vect[2] =0.0;

at_vect[0]=-in[1]
at_vect[1] = PANEL_WIDTH +in[0]

at_vect[2] =0.0;

at_vect[0]=SIDE_WALL/2.0
at_vect[1] = -FRONT_WALL-in[0]

at_vect[2] =0.0;

lyes-

at_vect[0]=SIDE_WALL/2.0
at_vect[1] = -FRONT_WALL+PANEL_WIDTH +in[0] |«yes -<^an =2Ö>

at_vect[2] =0.0;

at_vect[0]=SIDE_WALL/2.0
at_vect[1] = in[0]
at_vect[2] =0.0;

at_vect[0]=SIDE_WALU2.0
at_vect[1] = PANEL_WIDTH +in[0]

at_vect[2] =0.0;

at_vect[0]=SIDE_WALU2.0
at_vect[1] = -PANEL_WIDTH -in[0]

at_vect[2] =0.0;

Load Frag

DRAFT

DRAFT

Flow Diagrams
Incapacitaioncalc

DRAFT

DRAFT

sprintf(str,"%s:,MGE /
D_CRMAN) /

sprintf(str,"%s:,MGE
D_CRMAN)

done =1

i
/ fclose(fp)

/
I

I ++runum

sprintt(str,"date >
3dp_RUN_%d",runum)

system(str)
sprintf(str,"3dp_RUN_%d",runum)

fp=fopen str for appending
fprintf to fp config and frag file names

fprintf to fp o
 fclose fp

bzero(ap)
ap.ahit = hit

ap.a_miss = miss
ap.a_onehit =

ap.a_diverge=ap.a_rbeam =0

nn?\ /frc
\snoty

-A -"side^

print output
sprintf(str,"/bin/rm#DP_RUN_%d",runum);
 system(str)

V..
stop

DRAFT

DRAFT

calculate_bp_positions(STEPWL,STEPIN,FRONT_WALL,SIDE_WALL

—yes-.

++nbp

4
i++ —1

ap.a_ray.r_pt[i] = CR_MAN_OFFSET[i]- | ! ap.a_ray.r_pt[i] = ST_MAN_OFFSET[i]-
(men[man].position[i]-burst_pts[xnbp][i] | I (men[man].position[i]-burst_pts[xnbp][i]

i++

DRAFT

DRAFT

— yes

sprintf(manout,"bp
%dman%d.in,xnbp

+1,man+1)

manoutfp = open manout
for writing

manoutp != NULL ,> yes

T
fprintf

headers

ap.a_ray.r_dir[0] = frag_dirs[j][0]*cos(D2R*90.)-
-yes <; vbp>0 >-n°^:

! frag_dirsö][1]*sin(D2R*90.0)
ap.a_ray.r_dir[1] = frag_dirs[j][0]*sin(D2R*90.)+

frag_dirs[j][1]*cos(D2R*90.0)
ap.a_ray.r_dir[2]=frag_dirs[)][2]

M 4

-J 6

men[man].incap_front = |
cman_incap_FiPA1000JN22(num_hits_hitfrag,inhit,outhit)
men[man].tot_incap_front+=men[man].incap_front[xnbp] \

front
shot2

inhit[i][num_hits]=rt_inhit[i]
outhit[i][num hits]=rt_outhit[i]

ZU

DRAFT

DRAFT

/side\
Uho!/'

calculate_bp_positions(STEPWL,STEPIN,side_WALL,SIDE_WALL

I side. Jncap =0

i
! 1 = 0 ;

>—yes-.

++nbp

;
H i++

-<T< num men^> yes

sidejcap/
=num men

ap.a_ray.r_pt[i] = CR_MAN_OFFSET[i]-
(men[man].position[i]-burst_pts[xnbp][i]

ap.a_ray.r_pt[i] = ST_MAN_OFFSET[i]-
(men[man].position[i]-burst_pts[xnbp][i]

^

DRAFT

DRAFT

■~.,y

Incapacitation Calculation

DRAFT

DRAFT

Flow Diagram
Hit

DRAFT

DRAFT

didhit = FALSE

stop

rt_outhit[0] = pp->pt_outhit->hit_point[0]
rt_outhit[1] = pp->pt_outhit->hit_point[1]
rt_outhit[1] = pp->pt_outhit->hit_point[2]

rt_inhit[0] = pp->pt_inhit->hit_point[0]
rt_inhit[1] = pp->pt_inhit->hit_point[1]
rt_inhit[1] = pp->pt_inhit->hit_point[2]

pp = pp->pt_for

same =0

! i++

^

Hit

DRAFT

DRAFT

Flow Diagram
Miss

DRAFT

Miss

DRAFT

didhit = false

stop

DRAFT

DRAFT

Flow Diagram
Print Front Matrix

DRAFT

DRAFT

printf
headers

calculate num_across,
num_deep,space_across,

space_deep

4 :

Conn
i

1 j++

. ect

i
calculate y

, 1

I 1
' printf

++ cntr c
++

: 1

k< \.
umjnery

> yes 1

1
inc = inc +

men[k].incap_front[cntr]

k++

I

Print Front Matrix

DRAFT

DRAFT

Flow Diagram
Print Side Matrix

DRAFT

DRAFT

printf
headers

calculate num_across,
num_deep,space_across,

space_deep

j=o

-yes
-num_acrMS/

printf
blank
line

calculate x i
▼

printf x /

"
Conn- j++

v ect

1
▼

calculate y

/

j =

printf y

i
num_acro ss -1 I

 i

| i++ ~]

, .. .i

(1)
v y

/ printf

 !__..
++ cntr

i _

. _i -

L ■?...

1

++cntr mc = inc +
men[k].incap_side[cntr]

k++

Print Side Matrix

DRAFT

DRAFT

Flow Diagram
updaterunmonitor

DRAFT

DRAFT

sprintf(str"3DP_RUN_%d",runum)
fp = fopen str for reading

v

sprintf(str "3DP_TMP_%d",runum)
fp1 = fopen str for writing

V

get first line from fp and write
tofpl

/

get second line from fp and
write to fp1

write pc to file

fflush fp,fp1

fclose fp,fp1

Update Run Monitor

move 3DP_TMP_(runum)
to 3DP_RUN_(runum)

stop

DRAFT

APPENDIX II - V&V Draft Report

DRAFT

Verification & Validation Report

Executive Summary

The 3DP code is a major enhancement of the legacy codes PIMMS and PICODE. In
place of a key assumption in the legacy code computations a direct high resolution
calculation of incapacitation has been introduced. This conceptual model and the delta
from the PIMMS and PICODE versions will be discussed in the next section. Pimms in
this report will be designated 2DPimms and the 3DP code will be referred to as
3Dpimms.

A listing of the total objectives for W&A can be found in the V&V plan. However, the
verification processs can be looked at in three parts. First, have the general portions of
the legacy models been represented and coded in an appropriate manner? This area
concerns the definitions of Burst Points, Aim Points, Man locations, and how these are
calculated. This area also defined the calculation of an average incapacitation value
which is the average of the men incapacitated for each burst point divided by the number
of men in the room.

The second area is the definition and computation of coordinate space for the room and
panels in a three dimensional coordinate frame and the fragment path data which is
converted from panel space to room space. Also, does the raytrace code provide the
appropriate entry and exit wound coordinates for input to the high resolution
incapacitation calculation?

The third area is the implementation of the batch mode version of the ComputerMan.
Given an entry and exit point of a wound and or wounds, does the incapacitation result
match the result that the GUI version of ComputerMan would create and is it reasonable?

This document will outline the conceptual model for both the 2D approach and the 3D
approach. The differences will serve to show that the 3D model is a more accurate
methodogy to calculate this data. It shall also serve as a baseline to understand where the
3D method inherits items like aimpoints, burstpoints, sniper positions, and other legacy
concepts.

Conceptual Model Description

This section will attempt to cover the definitions and assumptions that are pertinent to
both the 2D Pimms and the 3Dpimms conceptual models. It is not intended to be a
comprehensive reference for a more complete description refer to CSC-TR-81-C-0006.
The assumptions that are inherent will be covered so that the verification and validation
data can be reviewed in this framework.

DRAFT

DRAFT

2dPimms

Methodology
According to the Pimms W&A plan the methodology of 2D Pimms is as follows,

"The room is filled with men for each attack. A cylinder of specified diameter and
vertical cross-sectional area is used to represent a man. A sequence of burst points at a
fixed interval along the wall is evaluated in a wall attack using impact fuzed munitions.
A matrix of burst points covering the room (in the horizontal plane) is evaluated when
delay fuzed munitions are used in a wall attack. Attack orientation or direction relative to
the wall is an input value. Fragment data about the burst point are input in five-degree
zones relative to the attack or shot direction. For each munition burst point, an
incapacitation determination is made for each man in the room. A man is considered
incapacitated when struck by one or more lethal fragments. When this criterion is not
satisfied, the man is undamaged by the burst. Both the number of incapacitated men and
their room locations are stored for each munition burst point. Attacks on each wall are
evaluated."

i©-

;©-

X

• • •

5 5 © ©
Figure 1 2D Room Burst Points

■ MUNlTtOI
WUT
ronrr

K.

REAR WALL ■ kV

DMA»

(100 99 9T f»7 ■»^ 9S 94 «3 92 9V

(«0 » 8S \n w K; S* S3 S2S S1

(so (n) (7*1 "1 (n) 7S 7«) (73s) [72 7V
.J
.J < @ M «r J* M ss «4 (s? 62 (s?
s
Uf o
5 ®

ss

4S

S7

47

[5*

44

[S3 52

(«I
'si

41

ttl
-i s 38 3t {j} 38j 3Sj 3« 33 32 31

@ 2» 2» 27 26 2S 'ft) (23) C22/ '21^ |
® '1S; 'i» 17 'is"*! IS 1« 'l3^ 12 'l1 j
no • 7 '•I s' 5) 4^ (^ | f2

1 1 1

~1
T

X

F«ONTY»ALL

MAN
CYLINDER

' OFFSET
DISTANCE
(DISTF1

\— OFFSET

Figure 2 2D Man Locations folsrw08

Figure 1 & 2 show graphically some of these concepts.

Assumptions Inherent in 2Dpimms

The 2D method of calculating probability of
Incapacitation is based upon several assumptions. These
assumptions were made in the community due to time,
computer and other resource constraints. The first is the
definition of an incapacitating fragment. In the 2D
methodology an incapacitation fragment is a fragment
that in testing completely perforates the appropriate
thickness of plywood and celotex. These values were set

DRAFT
Fioiirp "? — Fraompnt 7/WIPC

DRAFT

to be 3/8" and Vz" respectively. The second assumption is |rlj
that fragments are uniformly distributed in the quasi- S ;
steradian. Figure 3 is a graphical depiction of the zone b^
boundaries for an impact fuzed case. These zones are used i_3i
in 2D to calculate a density per steradian which is used to |Jt|
assign incapacitation to a man position. The third
assumption is that probability of being hit by one
incapacitating fragment is equal to probability of
Incapacitation. Figure 4 shows a panel which has been
perforated by fragments meeting this criteria. Previous
V&V work has only addressed the input methods to this
legacy Fortran model. However, the assumption and
techniques have been used as standards in computing
Probability of Incapacitation due to fragments.

Figure 4 - Panel Perforations Figure 5 shows the angle definitions utilized in 2Dpimms to
calculate the amount of the presented area of the man who
is in each zone and allow the calculation of whether the man cylinder has been hit by the
statistical equivalent of one fragment. One interesting assumption in the 2Dpimms
methods is the definition of an in-feasible burst point. This concept was coded in the
original Pinfib code and carried over into the Pimms implementation. The infeasible
burst points are created by a delay fuzed munition which impacts a wall at an angle. The
angle makes certain burst points in the pre-calcualted burst point array, in-feasible. This
approach was used because there was insufficient funds for the code developers to write
new code, according to the user manual. This assumption has been carried forward to
3Dpimms but a more correct implementation would recompute a new set of detonation
points.

MANCYUNOCn

PHI - HALF AMQU

MUNmoNSUftSTPOWr

Figure 5 - Angle Definitions in Pimms

DRAFT

DRAFT

3dPimms

Methodology
The 3D methodology uses the same test data that is collected for the 2D methodology.
This data only provides fragments which can perforate the required thickness of plywood
and celotex. However, instead of treating the panels as being in a zone and calculating a
statistical value (density per steradian) the knowledge of where a panel is in the test setup
allows a calculation of the 3D point at which the fragment perforates the wall in the test
room. Since the burst point of the munition is known from test or can be assumed, the
path that the fragment or debris traveled to get to the perforation can be computed. This
path can be transformed into a direction vector. It is this set of vectors that represents the
true fragment dispersion pattern from test.

The next step is to find intersections of these fragment paths with the men or personnel
who occupy the men/man positions. In the 3DPimms case a crouching man was created
to allow for the determination of hit. The three Dimensional method could stop at this
point and utilize the assumption of incapacitation from the 2D approach and know with
certainty that a man location was impacted by an "incapacitation fragment". This code
was utilized as an intermediate code until the linkage to the High resolution wound
ballistics model could be produced.

The linkage to the ComputerMan software was accomplished quickly and properly
because ComputerMan was written in C++ and was modular in design. This allowed a
modification of their current batch mode code to become the method of taking multiple
wound paths and computing an incapacitation value for that person.

The conceptual model can now be viewed in the three parts that make up this Verification
and Validation report. The first part is the definition and the creation of burst points, man
positions and a "room" for simulation activity to be computed. Secondly, the test data is
transformed into a three dimensional point, then into an appropriate direction vector so
that a raytrace from the burst point to the impact point can determine if a man was hit and

Phot«

2DPimms/Picode

DRAFT

DRAFT

where was he hit in our three dimensional room. Finally, now that the man was hit by
one or several fragments is an appropriate calculation done to determine incapacitation.

An assumption that was needed to make this happen is that mass and velocity data can be
input and then distributed to the fragments which were collected from test as perforating
the plywood panels. Currently, the analyst inputs into the configuration panel a
minimum and maximum value in both mass and velocity. The 3dp program utilizes a
uniform distribution function to specify mass and velocity to a particular fragment.
Figure 6 shows the configuration screen and these inputs.

FRAGMENT SETUP
■Minimum Maximum

MASS:- ,; ^'"L'O7"""""'^ -£--^--"-r~-.^ ;

ROOM SETUP
- ROOM SIZE

<>;16 X 16 (Ft.) ■'' "- " ,- '"■

igraiffv.i
Minimum Maximum O 4 X 4 (Ft.}

VELOCITY: 12 5 0. 5 ^fj 2200.8^ ▼ User Defined

SHAPEFAC:

DEHSITY:

1.5 "I ■■'

16. 1 ~ """\\w''^-> -

WALL LEHGTH 16 ■■1 ^ '
WALL WIDTH 16 f

WALL -STEP 1 |

IMP. :AHGLE 0.0
MAN' SETUP
Man Geometry

"O STAHDIHG ,-: " /
FUZIHG TYPE

O;IMPACT

♦ CROUCflING + DELAV

Man Proiediob
::♦• HONE '.:'.; ■'

0 VEST

O BOTH

EXTRA OUTPUT

□ TWO HEH

□ SNIPER

FLOOR FRAGHENTS?

■ -

Figure 6 - The configuration setup screen

Additionally, a fragment shape factor is set and the density of the fragments is set for the
grenade based upon the material type. If, grenade designs specify multiple materials in
the grenade fragmentation pattern the analyst would have to decide the effect of this
assumption. However, since test data does not tell us the makeup of the fragments that
actually perforate the panels, hydrocode results or other tests would have to be utilized to
accurately set this value.

Verification and Validation Results
In an effort to make this report usefull and easy to trace back to the Verification and
Validation Plan, Table 1 shows a restatement of the 9 V&V Plan requirements and
where these are addressed in this report.

DRAFT

DRAFT

V&V Plan Requirement Item
1) simulation loads fragment data correctly
2) simulation must calculate man and burst
points correctly
3) simulation must define fragment path
and impact point in the Cman coordinate
frame
4) simulation must aggregate results
correctly
5) simulation must match intuitive results
6) simulation must create proper burst
points
7) deviations from 2D must be explained
8) simulation must calculate room
coordinates from 2D fragments per panel
9) prove that fragment input to incap model
is consistent with fragments from panels

Section Addressing Requirement

TABLE 1 V&V Plan to V&V report Crosswalk

Section 1 Legacy methods implemented correctly

The first legacy method is the creation of burst points in the room. The routine that
calculates these in 3dp.c is the calc_bp_positions subroutine. This subroutine requires
that four values be passed to it. The values that are needed are the room step in mm. The
user enters the number in feet and the read_config subroutine translates it to millimeters.
Currently, the 3dp.c code sets the stepwl and stepin variables to be equal which means
that only square arrays of burst points can be created. This can easily be modified if the
test areas begin doing tests against rectangular room. The attack angle is also read from
the configuration file and is set globally. The maximum number of burst points is also set
in the 3dp.c code in the define section at the top of the code. The code that sets the
variable in the burst_pts array in 3dp.c can be seen in Figure 7.
i*
* Calculate burst point locations within the room based on wall sizes and steps.
* stepwl,stepin,front,side given in mm
*/

calc_bp_positions(stepwl,stepin,front,side)
float front,side,stepwl,stepin;

{
intnum_across,num_deep,i,j,k,ok;
float space_across,space_deep,x,y,pos,len;

num_across = front /stepwl;
num_deep = side /stepin;
space_across = (front - (float)num_across * stepwl) / 2.0;
space_deep = (side - (float)num_deep * stepin) / 2.0;
k=0;
ok = TRUE;
if (IMPACT) num_deep = 1;
pos = ATTACKANGLE < 0.0 ? side / 2.0: -side / 2.0;
for (i=0;i<num_deep;i++) {

y = (side / 2.0) - space_deep -(stepin * (float)i) - stepin / 2.0;

DRAFT

DRAFT

len = ATTACK.ANGLE < 0.0 ? pos-(side/2.0-y)*tan((-1.0*ATTACK_ANGLE)*D2R): pos+(side/2.0-
y)*tan(ATTACK_ANGLE*D2R);

for (j=0;j<num_across;j++) {
x = (front / 2.0) - space_across - (stepwl * (float)j) - stepwl / 2.0;
burst_pts[k][0] = x;
burst_pts[k][1] = y;
burstptsjkpj = in'rtial_burst_pt[2];
if ((x <= len && ATTACK.ANGLE < 0.0) || (x > len && ATTACKANGLE > 0.0) || ATTACK.ANGLE == 0.0)

burst_pts[k]p] = 1.0;
else burst_pts[k][3] = (-1.0);
++k;
if(k>MAXBP){

ok = FALSE;
-k;}}}

num_burst_pts = k;
if (!ok) {

fprintf(stderr,"0\n" WARNING:: Number of burst points exceeds maximum.\n\tWalue set to maximum
(%d).",MAXBP);

num_burst_pts = MAXBP;}

}

Figure 7 - The Calc_bp_positions subroutine

A graphics code which checks the
functioning of this routine was
written during the checkout of the
intermediate code. This code bp.c
shows that given the correct inputs in
stepwl , stepin, and angle the code
properly calculates the burst point
locations and whether according to
the 2Dpimms method the burst point
is feasible. This value is stored in the
burst_pts[k][3] location. Figure 8
shows a graphical representation of
the calculated values from the
calc_bp_positions subroutine.

12SB3azaarei7i58to2nasr9634i3M

I zsB&auBäa ^rfensöpe we»
?66M4281

IMS842261

124B3Z1808Bl68523i2IMa?2S&HE-*
lr?<83US9SaSSTS13StW!3?n5S39237
I 2«3BHB8fttS«5IMiaaB6?0543aZ26

liZ4SZB1l3Sai6«83IlS»«8523eZ(M
l-Z4aZni9S7«6*lf31lS3B3B?5ü5193
I ?«ZB1B9«?«8MB3f19BBaB85aH»82
1 *<B2HlS387TS14E2i »78*54933171

SILL=1^.U SI l^= W-.

|>jaSHI312H10Bj| <?#*#<»« 1

I «J3B2T2«?Kä«3«2e gi^lP^^Wi'

 —^—-—13B2S2E3I2!

Figure 8 - The Bp.c code for visualizing burst points

Figure 9 is another graphics of
this same subroutine plotted in
the 2d coordinate frame with the
x and y axis as defined in figure
2. The user is cautioned to refer
to the next section to see how
the coordinate frame effects the
numbering of these burst point
locations. Only the numbering
is effected not the actual
location of the burst point.

Figure 9 - Two different visualizations in 2D of the burst point locations.

DRAFT

DRAFT

-2438.4^2438.4,0 -2438.4,2438^4,0

-x,-y ! -x,y

x,-y | x,y

2438.4>2438.4,0 2438.4,

Output matrix and averaging

A very important part of the legacy techniques which
was required to be maintained is the averaging of the
burst points. The results for each burst point position
for all men in the room is the average of the number of
men incapacitated divided by the number of men in the
room.

Section 2 Coordinate frame and geometry of man

Figure 10 - Coordinate Frame Coordinate Frame

The Coordinate frame of the 3Dpimms simulation can be seen in Figure 10. This shows
that looking down on the room the positive x and y location is in the right lower corner of
the room. The corner coordinates are shown in millimeters. In english units, assumming
a 16 foot room, the corners are at 96 inches. This is between panel 12 and 13. Figure
11 shows the panel locations for a
typical room. The Floor Panels will be
covered in their own diagram. With
this coordinate system in place
a code was written to convert
from a 2 Dimensional panel
oriented data format to a full 3
Dimensional format. A
primary focus of the
verification part of this
document is the coordinate
frame and the conversion of
fragments into the proper
fragment location in 3D from the test
data as collected at the range. Appendix
1 contains a detailed view of test data
converted by the code displayed
graphically and in plain text. A
spreadsheet ouput is part of Appendix 1. This spreadsheet converts a full grid of
"fragments" at one foot increments for each panel into the proper coordinate frame. The
equations utilized are identical to those found in the code.

en o ->J 00

4
i
i

-x,-y ! -x,y
9

3 i 10

2 I
I

11
x,-y i x,y

1 i
i

12

v % % _x

O) Ol ^ O)

Figure 11 - Panel Locations

DRAFT

DRAFT

ComputerMan Geometry

The geometry was created by evaluating the graphical user interface version of
ComputerMan. It was found that the Graphical User Interface used the concept of
bounding boxes to specify the exterior of the wound ballistics data. In fact, they utilize
the bounding boxes as a way to position shotlines through the actual Anatomical data.
The first geometry that was extracted for this same purpose proved to be too large and
cumbersome to utilize. It was essentially every skin voxel in the Anatomical description.
Appendix II displays the early geometric work and some interesting current work. The
bounding box is a much more useful and elegant implementation. The exact coordinates
for the standing man were extracted form the ComputerMan code. These sections were
then read into BRL-CAD to create a set of solids which represented the bounding
sections as ARB8 geometrical solids. These solids were then built into a MAN region.
The next step was to achieve the rotations needed to have a crouching man. This was a
more difficult task. The rotation angles were available from the code, but BRL-CAD
rotates about specific points when editing geometry. Regions were created to match the
definitions of lower leg and upper leg. Then rotations about the correct point allowed the
BRL-CAD bounding box man to crouch as needed. Comparisons were then made to the
Graphical User Interface versions with measurements made on scaled prints to compare
all vertices. Figures 12 -15 show different views with a scaled axis. During this V&V

Figures 12 -15, Right, Top, Front, and 3D view of Bounding Box Crouching Man

DRAFT

effort a computer code was written to take the exact rotation angles and utilize the exact
methodology to rotate the bounding boxes as found in ComputerMan. This approach was
compared with the original manual rotations to obtain a crouching man. The differences
were less than a few millimeters for leg locations. However, this analysis leads to a
discussion of the necessary pairing of geometry file and the crouching man offset as set
in the 3dp.c file. The crouching man offset is set because the crouching man geometry
does not have the 0,0,0 point set at the middle of the geometry at ground level. The
crouching man actually floats in the air approximately 1.33 ft above the ground. This is
an artifact of the method used to rotate the sections into a crouching man. The torso and
head were left at the same point as they exist in the standing man anatomy file, and the
legs were bent and rotated in relation to the torso. Therefore, numerically the man floats.
In order to place the man at the point required for the 3dp.c methodology the origin must
be at the center of the man at ground level. This is accomplished by the crouching man
offsets

float CR_MAN_0FFSET[3] = { 267.6144,123.1392,405.384} /* in mm
float ST_MAN_OFFSET[3] = {267.6144,123.1392,0.0}; /* in mm

^={0.878,0.404,1.33}*/
(ft={ 0.878,0.404,0.0}*/

Figure 16 - Anatomy
Floating

Figures 16 and 17 show the position of the man
uncorrected by the offsets. The x and y offsets are
needed because when viewed from a plan view (Z
axis) the origin of the Anatomy files is in the
lower left hand corner of the man. This is at the
back of the man on his left side. Since the man
position is computed by the method in the next
section to find the centroid location, the man
offsets translate the man to be centered around a

Figure 17
Origin

Anatomy computed point which allows an optimum number
of men to fit in a 16 x 16 foot room. This was
utilized for consistency with the 2D version which placed 100 men in
this size room. Using these offsets 99 men are able to be fit in the
standard size room.

DRAFT

DRAFT

Man Positions

As discussed in the previous section, the man positions
were calculated to allow as close to 100 men to occupy
the standard room. This analysis took into account that
the man position is a place for an individual crouching
man to be in the room randomly. This means that the
room is analyzed as if only one man is in the room at the
various man locations. It is these man locations which
become incapacitated if a man is in that position in the

room. The routine to calculate these values is similar to Figure 18-ManPositions
the 2D version. The code shows that the MANDEPTH
and the MANWTDTH and the numacross and the numdeep drive the output of this
routine. In our case, the numbers have been set to match the geometry used to minimize
the part of the person outside the typical 16x16 foot room.
calc_man_positions(front, side)
float front,side;
I

int num_across,num_deep, i, j, k;
float space_across,space_deep,x,y;

num_across = front / MAN_WIDTH;
num_deep - side / MAN_DEPTH;
space_across - (front - (float)nura_across * MAN_WIDTH) / 2.0;
space_deep -= (side - (float) num_deep * MAN_DEPTH) / 2.0;

if((TWOMAN) SS (FRONT_WALL/FT2MM > 5) SS (SIDE_WALL/FT2MM > 5)) {
twoman[0] =num_across - num_across/2;
twoman[l] = twoman[0] + num_across +1;)

else TWOMAN = 0;

if((SNIPER) St (FRONT_WALL/FT2MM > 5) S5 (SIDE_WALL/FT2MM > 5))1
sniper[0] =3 *(num_across - num_across/2);
sniper[l] = sniper[0] + num_across - 1;
sniper[2] - sniper[1] + num_across - 1;)

else SNIPER = 0;

k=0;
for

(float)i) - MAN_DEPTH / 2.0;
(i=0;i<num_deep;i++) 1
y - (side / 2.0) - space_deep -(MAN_DEPTH

for (j=0;j<num_across;j++) (
x = (front / 2.0) - space_across - (MAN_WIDTH * (float)j)
men[k].position[0] = x;
men[k].positionfl] = y;
men[k].position[2] = 0.0;
++k;))

men = k;

MAN WIDTH / 2.0;

Figure 19 - The Calc man positions Subroutine

DRAFT

DRAFT

Section 3 Correct implementation of wound ballistics model

Pmsincap & Pmssub

This section will address the output result for a fragment or group of fragments that hit
one man. For 3dPimms the ComputerMan code developed by ARL is utilized. The code
is distributed with modular C++ routines and both a GUI and a batch mode capability.
As described in the 3Dpimms users guide, 3dPimms required a new batch mode to allow
multiple fragments to be combined before a limb state output was required. A code
called pmsincap is a standalone version of the code which is used in 3Dpimms. This
code can demonstrate that if a set of fragments and associated hitpoints is input, a specific
incapacitation value is output from the ComputerMan model. Also, pmsincap allows a
verbose option which allows debugging.

A sample output from pmsincap is shown and the output from a verbose run of 3 dp
shows that given specific impact conditions the pmsincap & pmssub routines produce the
correct output for incapacitation required by 3dp.

Continuous W&A

This document does not utilize a statistical format for W&A. Instead graphics based
tools have been developed, tested, and utilized to leave with the 3Dpimms method a set
of utilities which can help to guaranty ongoing and continuous Verification , Validation
and Accreditation activities. This is important because to be useful over time the
3Dpimms methodology must grow with ORCA and the lethality and evaluation
community. This section will show in detail the tools which can and have been utilized
to answer each of the questions in section 1-3.

3dpshow
The first code allows the user to graphically load any fragment dispersion file in a 3 dp
file. It is based upon all of the methods which are used in 3dp.c . The one exception is
that a room full of crouching men is utilized to raytrace instead of the single crouching
man BRLCAD file. The features that are available, show which men are hit using
raytracing and to report which man number is hit. The graphics code then shows a
faceted representation ofthat man at the appropriate man location. The user is then able
to increment the burst point location. The code then displays which men were hit and
where in the room they are. The code also displays the shotline or shotlines from the
fragment input starting at the appropriate burst point. The code has a toggle for printing
out the specific hitpoints in room coordinates. This output can be used as input to
pmsincap for V&V. This code was designed to show visually that the proper fragment
positions read from the *.3dp file are raytraced from the burst point correctly and produce
the correct number of men hit for any burst point. This code, however, does not have the

DRAFT

DRAFT

ability to look at a front or a side shot. The next code in the V&V tools addresses this
area.

nx~~~. '~n
■ ■

Frag Data Hit Points

I1 1

-» &': C?- ft!

^, .^ •" r *
Be»™"

^^^^^^^^^MmlHvlf'ISpmrffllffVMfftft

. , \JT SL
wmmsmmmmLZS^M^

y-^P*

ROTATE

?^P*

y^^

>^P*
TRANSLATE

B H

Print Data

Reset View

Burst Point

ZOOM

IklH
o\ on

FRAGS

FP.AG SPHERE

WALLS

0\ OFF

WIRE SHADED

FACETS

ON OFF

Figure 20 - The 3DPShow code and a test file with two fragments hitting in directly opposite directions

Show_V&V
This code allows foil control over the man position, the burst point position, the fragment
in the 3 dp file, and the view. Also, by utilizing the front and side toggle, the shotlines
are rotated so that the attack aspect can be modified. This allows the analyst to create
special *.3dp files which allow the correct raytrace answers to be calculated by hand and

DRAFT

DRAFT

The check to see if these same results are displayed by the code. One interesting 3 dp file
has only two fragments at the exactly three feet high and in opposing directions. The
entry and exit points are then easily calculated and the expectation is that only at certain
burst points will the men in a row be hit. This has been tested and the output of the inhit
and outhit point checked. This code also is important to the V&V effort because unlike
the previous code, 3dpshow, this code uses only the single man file and the crouching
man offset that were discussed in previous sections. Therefore, it the starting point of
the ray that is translated relative to the man position and real burst point relative to the
crouching man BRL-CAD geometry before the raytrace is accomplished. This code also
shows the burst points and the man locations. The man when hit changes color and the
display of the hitpoint location is filled with the corrrect information. An interesting
finding during this V&V is that the current definition of front and side are reversed. This
does not effect the final answer because both front and side are calculated and averaged
separately.

Figure 21 — The show V&V code for verification of hitpoint

i;. r.: :•: :•: ;■::;■:;•

fcm*a?wtf mt

DRAFT

Virtual Worlds and Prospect
In an effort to bring the graphics for Verification to an immersive level, a Test Room
python script was generated to utilize the Prospect Virtual Reality tool. The concept for
use of this tool is that the images from the test can be utilized as texture maps. These
texture maps can be applied to representative polygons for each panel. Then bursts can
be visualized in each room and the fragment paths will go through the fragment hole in
each wall. A bounding Box man has also been converted from the 3dpshow code above
and texture mapped with an image. The man can be placed anywhere in the room and the
burst file can be read and the burst point set. Rays indicating the path of the fragments
are drawn from the burst point extending to the wall. The user can traverse the room by
using the mouse to fly until the CTRL and left mouse are hit. The right mouse can be
utilized to change the view using it as a virtual trackball. Future plans are to allow the
user to verbally call up the burst point, man location, and fragment file. Then issue the
fire command and select a fragment. Finally, a raytrace code would indicate which
polygons were hit and report in the man's reference system the impact point while calling
the incapacitation routine. This would create a fully interactive version of the
methodology. Also, the ability to immerse, and fly around the scene yields great
advantages for verification and validation. Figure 23 shows a screen with the man and
rays.

Figure 23 - The analysis environment in ProspectV2 from Envisage

DRAFT

DRAFT

3DPW
The main approach for verification of all loops and the logic in the primary code 3dp.c
can be found utilizing the output of 3dpw.c. This code is an exact copy of the current
production 3dp.c with a large amount of statements to print out all of the variables and
the exact flow of the code. The output from this run can then be checked in depth with
the previous visualization and analytical tools. An example of this technique can be seen
in this example.

Example of 3dpW hitpoints checking all of the way to pmsincap run!

Summary

This report is intended to provide support for the Verification decision and to provide
enough tools to aide in the Validation effort for this innovative methodology. This report
has presented the tools which were built in support of this effort and shown examples of
how anyone can verify that the concept model is appropriate and is implemented in the
correct manner.

In the process, small improvements have been made. For example, the crouching man
was verified by producing a computer code which utilizes ComputerMan routines to
create the bounding boxes and to rotate those boxes into the crouching man posture. This
model and an earlier hand rotated model were compared for accuracy. The manual
model was found to be in excellent agreement with the more precise method. However,
since time was available to create a more precise crouching man, this model will be used
in the future.

It was also discovered that the definitions of front and side were not implemented across
the code. In fact, the numbering of the men and the burst points were rotated from the
assumed positions. This is confusing in a way but, the best solution is to leave the
numbering and place new labels on the output for the correct side which has been
calculated.

DRAFT

APPENDIX III - Geometry Possibilities

BRL-CAD Geometries for Raytrace Linking to ComputerMan / Orca

Glenn Romanczuk
Chris Pitts

UAH Research Institute
Visualization & Simulation Laboratory

glennr@redstone.army.mil,cmpitts@redstone.army.mil
Introduction

UAH Research Institute identified possible problems in the calculation of Probability of
Incapacitation utilizing the Pimms/Picode methods. This early work led to the concept of
utilizing ComputerMan as a methodology for determining incapacitation for the MPIM
program. With MPIM funding UAH RI created several different concepts of ways to use
raytracing in BRL-CAD to replace the statistical assumptions in Pimms. This paper will
explore some of this early work and also the creation of files which properly allow
linkage to ComputerMan / ORCA.

Approach

The first approaches that were attempted involved using a
specific tissue index from the ComputerMan data to gather the
necessary geometric information required to build a BRLC AD
file with the appropriate scale and surface position. Tools
which are included with the ComputeMan system were used to
extract the tissue positions for all skin cells. These skin cell
positions are cell index points for a specific section in the
ComputerMan anatomy file. This data was then utilized to
build a box or ARB8 representing each skin cell. It was
thought that this geometry would be usable to define all hits on
the man in the right coordinate space. Figure 1 shows the
result rendered in using rt. Although this geometry has the
main outline of the standing man geometry several areas can
be seen which make this approach suboptimal. In the feet, it is
clear that a ray could pass through this geometry. Also, the
size of the file created was rather cumbersome. The third
problem with this approach was the ability to rotate the cells
into the other positions required for use in linking to
ComputerMan. With these problems in mind another
approach was attempted using the method utilized by the GUI.

BACK RIGHT FRONT LEFT

A. ft JL

a- W

Figure 2 - The Crouching man saved from GUI

Bounding Box
Method -

Figure 1- The skin section .g file
A quick look at tne coded version ot the
information used by the Graphical User
Interface (GUI) suggested the next
method. This method was to utilize the
bounding box data for every section at a
specific z level and to construct a chunky

representation of the Anatomy in the proper coordinate frame. Figure 2 shows the
crouching man in the ComputerMan GUI. The GUI utilizes the bounding box visual to
orient the wound path. Therefore, the bounding box
data was extracted from the ComputerMan source
code and a program was built to create an input script
to import into BRLCAD and create a BoundingBox
file in mged *.g format. This led to the creation of
the bbman.g file which is rendered in Figure 3. This
figure shows the man transformed into the crouching
posture by rotation of certain bounding box regions.
This process was at first manually accomplished but
now a method is utilized straight from the
ComputerMan reference documentation to rotate the
bounding boxes by the correct matix. Figures 4-6
show the other postures that have been developed
from the rotation angles stored in the ComputerMan GUI. 2ÄÄJT

Current Efforts

Figures 4,5,6 The Driving, Sitting, and Standing Bounding Box men shown faceted from .g file.

One criticism of the Bounding Box man is that he is chunky and a raytrace will not
provide a correct obliquity value for ricochet calculation or for other algorithms for
velocity degradation due to clothing or armor. These are valid limitations of using
Bounding Boxes as geometry to raytrace for linking to ComputerMan/ORCA. The
suggestion has been made to utilize another solid rather that a box or ARB8. The TEC or
TGC solid appear to be the right type of solid to add resolution but to keep all of the
benefits of this approach.

Figure 7 shows a quick implementation of using tgc's as the element. This method
should be checked at each section level to compare with the skin cells to make sure that
this is the minimum enclosing tgc to fit the skin cells. Also, a check should be made to
be sure that the tgc does not cut too deeply through into the volume occupied by the skin
cells. This is a first cut because we did not try to constrain the tgc's to have the save size
at the top and bottom of adjoining cell. This method would produce a smoother surface,
although it would add to the areas where the tgc model does not have similar tissue in the
database of the Anatomy file.

Figure 7 - A standing Tgc man in Brl-Cad and in a faceted form converted using Fred.

Figure 8 & 9 show two different results when utilizing the bounding box data to generate
tgc's at each section level. The first shows the proper results which encase the skin cells
in a tgc. The second figure shows a problem are with the quick approach. Therefore, the
analyst must find the necessary values for input to the tgc at this section level.

["III" -H i-M-H | jl II L+t-| V HH-

g

jJi
it'

111 'tr -rr X

*H~' - j j j

Ill jii 1
.1

TT"*" itfri* -J4- + 53

TT + P §§ -H- -H- 1 f+
'iiiliiii' 4* t+H- ill! I1

■ ! ! .

Figure 8 - Section 10 of skin
guy with tgc shown

Figure 9 - Section 40 showing skin cells outside
the tgc autocreated using the bounding box
parameters

Other Efforts and Discussion

Decimation is one method of polygon reduction. This is a rapidly changing field which is
of particular interest to analysts involved in real-time simulation, animation experts, and
people with large models. Laser range scanners which can produce detailed polygonal
models of the human body and other shapes also typically output large models. Several
methods have been examined to reduce the test model in the ply format to other usable
formats. There are a number of free decimation tools available on the web. The two that
have been examined are the Qvis/Qslim and JadeV21. The test ply object was converted
to a wavefront *.obj file using appropriate conversion tools. Also, the model was reduced
to separate parts files for the arms, legs, thorax, etc.. Having the decimation technique
apply to smaller sub models should allow for different error tolerance values to be set for
each part of the person.

w

These two examples show that significant reduction in the number of facets can be
accomplished without reduction in the overall shape and with a limited error from the
exact surface. These examples lead to a proposed solution for using the range scan data
in the linkage to ORCA. If a range scan person could be put in the appropriate poses etc..
it would be possible to input, divide into parts, decimate, then import in to BRL-CAD
using the ARB6 as the solid of choice , these parts would then be made into regions.
Therefore, BRL-CAD raytracing could be used on this high resolution person in
conjunction with the downsampled tgc man. By having both representation in BRL-CAD
boolean operations could be utilized looking at differences. Also, once in BRL-CAD
automatic uparmoring could be conducted using Libwdb or other automated techniques
which already exist in the lethality/survivability world. This also would help the
extensibility of the approaches used in this simulation to be utilized for other purposes.

Conclusions

Several methods of utilizing data in the ComputerMan / Orca distribution and having
there basis in the underlying Anatomy have been shown. These methods on the low
fidelity end utilize only the bounding box information and the rotation and translation
information for the various postures. A more robust representation can be accomplished
utilizing skin cells extracted from the Anatomy if areas of error can be accepted.
However, the tgc method if created with caution, leads to the most accurate BRL-CAD
representation of the ComputerMan/Orca Anatomy description for raytrace. Similar
methods to our creatman.c code could be used on the tgc man to re-reate the appropriate
postures.

The two millimeter resolution ply files testman.ply has been reduced into appropriate
parts, decimated into a sample to see the effects and converted into a ARB6
representation for raytrace in BRL-CAD. These results of this work provide a path
forward for both the efforts of Mr. Rosenblatt and ARL in general for incorporation of
ComputerMan/Orca in vehicles (like the BMP3) where munitions have an incapacitation
requirement. These computations might be more CPU intensive than the current
Sperazza/Kokinakis or Ballistic Dose computations, however, this will ensure that across
the application areas for incapacitation calculation there will not be apples compared to
oranges.

